Complete integration-by-parts reductions of the non-planar hexagon-box via module intersections

被引:0
|
作者
Janko Böhm
Alessandro Georgoudis
Kasper J. Larsen
Hans Schönemann
Yang Zhang
机构
[1] University of Kaiserslautern,Department of Mathematics
[2] Uppsala University,Department of Physics and Astronomy
[3] University of Southampton,School of Physics and Astronomy
[4] Johannes Gutenberg University,PRISMA Cluster of Excellence
[5] ETH Zürich,Institute for Theoretical Physics
[6] University of California,Kavli Institute for Theoretical Physics
关键词
Differential and Algebraic Geometry; Scattering Amplitudes; Perturbative QCD;
D O I
暂无
中图分类号
学科分类号
摘要
We present the powerful module-intersection integration-by-parts (IBP) method, suitable for multi-loop and multi-scale Feynman integral reduction. Utilizing modern computational algebraic geometry techniques, this new method successfully trims traditional IBP systems dramatically to much simpler integral-relation systems on unitarity cuts. We demonstrate the power of this method by explicitly carrying out the complete analytic reduction of two-loop five-point non-planar hexagon-box integrals, with degree-four numerators, to a basis of 73 master integrals.
引用
收藏
相关论文
共 1 条
  • [1] Complete integration-by-parts reductions of the non-planar hexagon-box via module intersections
    Boehm, Janko
    Georgoudis, Alessandro
    Larsen, Kasper J.
    Schoenemann, Hans
    Zhang, Yang
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (09):