Boundary element methods for Maxwell's equations on non-smooth domains

被引:0
|
作者
A. Buffa
M. Costabel
C. Schwab
机构
[1] Istituto di Analisi Numerica del C.N.R. Via Ferrata 1,
[2] 27100 Pavia,undefined
[3] Italy; e-mail: annalisa@dragon.ian.pv.cnr.it ,undefined
[4] IRMAR,undefined
[5] Université de Rennes 1,undefined
[6] Campus de Beaulieu,undefined
[7] 35042 Rennes Cedex,undefined
[8] France; e-mail: costabel@univ-rennes1.fr ,undefined
[9] Seminar für Angewandte Mathematik,undefined
[10] ETH Zürich HG G58.1,undefined
[11] CH 8092 Zürich,undefined
[12] Switzerland; e-mail: schwab@sam.math.ethz.ch ,undefined
来源
Numerische Mathematik | 2002年 / 92卷
关键词
Mathematics Subject Classification (1991): 65N38;
D O I
暂无
中图分类号
学科分类号
摘要
Variational boundary integral equations for Maxwell's equations on Lipschitz surfaces in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb R}^3$\end{document} are derived and their well-posedness in the appropriate trace spaces is established. An equivalent, stable mixed reformulation of the system of integral equations is obtained which admits discretization by Galerkin boundary elements based on standard spaces. On polyhedral surfaces, quasioptimal asymptotic convergence of these Galerkin boundary element methods is proved. A sharp regularity result for the surface multipliers on polyhedral boundaries with plane faces is established.
引用
收藏
页码:679 / 710
页数:31
相关论文
共 50 条