Hierarchical attentive Siamese network for real-time visual tracking

被引:0
|
作者
Kang Yang
Huihui Song
Kaihua Zhang
Qingshan Liu
机构
[1] Nanjing University of Information Science and Technology,Jiangsu Key Laboratory of Big Data Analysis Technology (B
来源
关键词
Visual tracking; Siamese networks; Attention mechanism; Hierarchical features;
D O I
暂无
中图分类号
学科分类号
摘要
Visual tracking is a fundamental and highly useful component in various tasks of computer vision. Recently, end-to-end off-line training Siamese networks have demonstrated great success in visual tracking with high performance in terms of speed and accuracy. However, Siamese trackers usually employ visual features from the last simple convolutional layers to represent the targets while ignoring the fact that features from different layers characterize different representation capabilities of the targets, and hence this may degrade tracking performance in the presence of severe deformation and occlusion. In this paper, we present a novel hierarchical attentive Siamese (HASiam) network for high-performance visual tracking, which exploits different kinds of attention mechanisms to effectively fuse a series of attentional features from different layers. More specifically, we combine a deeper network with a shallow one to take full advantage of the features from different layers and apply spatial and channel-wise attentions on different layers to better capture visual attentions on multi-level semantic abstractions, which is helpful to enhance the discriminative capacity of the model. Furthermore, the top-layer feature maps have low resolution that may affect localization accuracy if each feature is treated independently. To address this issue, a non-local attention module is also adopted on the top layer to force the network to pay more attention to the structural dependency of features at all locations during off-line training. The proposed HASiam is trained off-line in an end-to-end manner and needs no online updating the network parameters during tracking. Extensive evaluations demonstrate that our HASiam has achieved favorable results with AUC scores of 64.6%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$64.6\%$$\end{document}, 62.8%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$62.8\%$$\end{document} and EAO scores of 0.227 while having a speed of 60 fps on the OTB2013, OTB100 and VOT2017 real-time experiments, respectively. Our tracker with high accuracy and real-time speed can be applied to numerous vision applications like visual surveillance systems, robotics and augmented reality.
引用
收藏
页码:14335 / 14346
页数:11
相关论文
共 50 条
  • [1] Hierarchical attentive Siamese network for real-time visual tracking
    Yang, Kang
    Song, Huihui
    Zhang, Kaihua
    Liu, Qingshan
    [J]. NEURAL COMPUTING & APPLICATIONS, 2020, 32 (18): : 14335 - 14346
  • [2] Hierarchical Siamese network for real-time visual tracking
    Li, Xiaojing
    Wei, Guanqun
    Jiang, Mingjian
    Zhou, Wei
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [3] Structured Siamese Network for Real-Time Visual Tracking
    Zhang, Yunhua
    Wang, Lijun
    Qi, Jinqing
    Wang, Dong
    Feng, Mengyang
    Lu, Huchuan
    [J]. COMPUTER VISION - ECCV 2018, PT IX, 2018, 11213 : 355 - 370
  • [4] Hierarchical correlation siamese network for real-time object tracking
    Meng, Yu
    Deng, Zaixu
    Zhao, Kun
    Xu, Yan
    Liu, Hao
    [J]. APPLIED INTELLIGENCE, 2021, 51 (06) : 3202 - 3211
  • [5] Hierarchical correlation siamese network for real-time object tracking
    Yu Meng
    Zaixu Deng
    Kun Zhao
    Yan Xu
    Hao Liu
    [J]. Applied Intelligence, 2021, 51 : 3202 - 3211
  • [6] SiamDA: Dual attention Siamese network for real-time visual tracking
    Pu, Lei
    Feng, Xinxi
    Hou, Zhiqiang
    Yu, Wangsheng
    Zha, Yufei
    [J]. SIGNAL PROCESSING-IMAGE COMMUNICATION, 2021, 95
  • [7] An IoU-aware Siamese network for real-time visual tracking
    Wei, Bingbing
    Chen, Hongyu
    Cao, Siqi
    Ding, Qinghai
    Luo, Haibo
    [J]. NEUROCOMPUTING, 2023, 527 : 13 - 26
  • [8] Siamese Centerness Prediction Network for Real-Time Visual Object Tracking
    Wu, Yue
    Cai, Chengtao
    Yeo, Chai Kiat
    [J]. NEURAL PROCESSING LETTERS, 2023, 55 (02) : 1029 - 1044
  • [9] Siamese Centerness Prediction Network for Real-Time Visual Object Tracking
    Yue Wu
    Chengtao Cai
    Chai Kiat Yeo
    [J]. Neural Processing Letters, 2023, 55 : 1029 - 1044
  • [10] Siamese Deformable Cross-Correlation Network for Real-Time Visual Tracking
    Zheng, Linyu
    Chen, Yingying
    Tang, Ming
    Wang, Jinqiao
    Lu, Hanqing
    [J]. NEUROCOMPUTING, 2020, 401 : 36 - 47