Metal sulfide MoS2 as efficient polysulfide adsorber for high electrochemical performance lithium-sulfur batteries

被引:0
|
作者
Jie Luo
Jianming Zheng
机构
[1] Xijing University,School of Mechanical Engineering
[2] Xi’an University of Technology,School of Mechanical and Precision Instrument Engineering
来源
Ionics | 2020年 / 26卷
关键词
Lithium-sulfur batteries; Shuttle effect; Polysulfide; Cycle stability; Specific capacity;
D O I
暂无
中图分类号
学科分类号
摘要
The high specific capacity and energy density of lithium-sulfur batteries have attracted many researchers all over the world. However, the poor cycling stability hinders the rapid application of lithium-sulfur batteries. The fast capacity fading is mainly attributed to the shuttle effect caused by the polysulfide migration from the cathode side to the anode side. In the past decades, great efforts have been made to improve the electrochemical performance of lithium-sulfur batteries. In this work, we design spherical MoS2@S composites as cathode materials for lithium-sulfur batteries. Due to the strong chemical affinity between the polar MoS2 and polysulfide, the shuttle effect can be efficiently inhibited during the discharging and charging process. As a result, the as-prepared MoS2@S composites display high specific capacity and superior cycling stability.
引用
收藏
页码:3809 / 3814
页数:5
相关论文
共 50 条
  • [1] Metal sulfide MoS2 as efficient polysulfide adsorber for high electrochemical performance lithium-sulfur batteries
    Luo, Jie
    Zheng, Jianming
    IONICS, 2020, 26 (08) : 3809 - 3814
  • [2] MCNT/MoS2 promoting the electrochemical performance of lithium-sulfur batteries by adsorption polysulfide
    Guo, Weimin
    Zhu, Qinglin
    Lu, Qinghua
    MATERIALS RESEARCH EXPRESS, 2020, 7 (03)
  • [3] MoS2/G interlayer as a polysulfide immobilization apparatus for high-performance lithium-sulfur batteries
    Fang, Xueyang
    Zhang, Mingang
    IONICS, 2021, 27 (09) : 3875 - 3885
  • [4] Dual functional MoS2/graphene interlayer as an efficient polysulfide barrier for advanced lithium-sulfur batteries
    Guo, Pengqian
    Liu, Dequan
    Liu, Zhengjiao
    Shang, Xiaonan
    Liu, Qiming
    He, Deyan
    ELECTROCHIMICA ACTA, 2017, 256 : 28 - 36
  • [5] MoS2/Celgard Separator as Efficient Polysulfide Barrier for Long-Life Lithium-Sulfur Batteries
    Ghazi, Zahid Ali
    He, Xiao
    Khattak, Abdul Muqsit
    Khan, Niaz Ali
    Liang, Bin
    Iqbal, Azhar
    Wang, Jinxin
    Sin, Haksong
    Li, Lianshan
    Tang, Zhiyong
    ADVANCED MATERIALS, 2017, 29 (21)
  • [6] Electrocatalysis of polysulfide conversion by sulfur-deficient MoS2 nanoflakes for lithium-sulfur batteries
    Lin, Haibin
    Yang, Liuqing
    Jiang, Xi
    Li, Guochun
    Zhang, Tianran
    Yao, Qiaofeng
    Zheng, Guangyuan Wesley
    Lee, Jim Yang
    ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (06) : 1476 - 1486
  • [7] Propelling Polysulfide Conversion by Defect-Rich MoS2 Nanosheets for High-Performance Lithium-Sulfur Batteries
    Liu, Mengmeng
    Zhang, Congcong
    Su, Junming
    Chen, Xiang
    Ma, Tianye
    Huang, Tao
    Yu, Aishui
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (23) : 20788 - 20795
  • [8] Deficient MoS2 nanoflowers to promote polysulfide redox conversion in Lithium-Sulfur batteries
    Niu, Aimin
    Liu, Huitao
    Tang, Xiaonan
    Zhuo, Shuping
    MATERIALS LETTERS, 2024, 355
  • [9] Simultaneous Cobalt and Phosphorous Doping of MoS2 for Improved Catalytic Performance on Polysulfide Conversion in Lithium-Sulfur Batteries
    Lin, Haibin
    Zhang, Shengliang
    Zhang, Tianran
    Ye, Hualin
    Yao, Qiaofeng
    Zheng, Guangyuan Wesley
    Lee, Jim Yang
    ADVANCED ENERGY MATERIALS, 2019, 9 (38)
  • [10] Accelerating polysulfide conversion by employing C/MoS2 composite host for lithium-sulfur batteries
    Jia, Yajuan
    Shang, Lisha
    Zheng, Liming
    Fu, Rui
    IONICS, 2024, 30 (12) : 7991 - 7996