Maximum principles;
Laplacian;
Fractional Laplacian;
Critical integrability;
35B50;
35D30;
35J15;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
In this paper, we study the maximum principles for Laplacian and fractional Laplacian with critical integrability. We first consider the critical cases for Laplacian with zero-order term and first-order term. It is well known that for the Laplacian with zero-order term -Δ+c(x)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$-\Delta +c(x)$$\end{document} in B1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$B_1$$\end{document}, c(x)∈Lp(B1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$c(x)\in L^p(B_1)$$\end{document}(B1⊂Rn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$B_1\subset \textbf{R}^n$$\end{document}), the critical case for the maximum principle is p=n2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p=\frac{n}{2}$$\end{document}. We show that the critical condition c(x)∈Ln2(B1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$c(x)\in {L^{\frac{n}{2}}(B_1)}$$\end{document} is not enough to guarantee the strong maximum principle. For the Laplacian with first-order term -Δ+b→(x)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$-\Delta +\vec {b}(x)$$\end{document}(b→(x)∈Lp(B1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\vec {b}(x)\in L^p(B_1)$$\end{document}), the critical case is p=n\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p=n$$\end{document}. In this case, we establish the maximum principle and strong maximum principle for Laplacian with first-order term. We also extend some of the maximum principles above to the fractional Laplacian. We replace the classical lower semi-continuous condition on solutions for the fractional Laplacian with some integrability condition. Then we establish a series of maximum principles for fractional Laplacian under some integrability condition on the coefficients. These conditions are weaker than the previous regularity conditions. The weakened conditions on the coefficients and the non-locality of the fractional Laplacian bring in some new difficulties. Some new techniques are developed.
机构:
Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai, Peoples R ChinaShanghai Jiao Tong Univ, Sch Math Sci, Shanghai, Peoples R China
Cheng, Tingzhi
Huang, Genggeng
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai, Peoples R ChinaShanghai Jiao Tong Univ, Sch Math Sci, Shanghai, Peoples R China
Huang, Genggeng
Li, Congming
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai, Peoples R China
Univ Colorado, Dept Appl Math, Boulder, CO 80309 USAShanghai Jiao Tong Univ, Sch Math Sci, Shanghai, Peoples R China
机构:
Nankai Univ, Sch Math Sci, Tianjin, Peoples R China
Yeshiva Univ, Dept Math Sci, New York, NY 10033 USANankai Univ, Sch Math Sci, Tianjin, Peoples R China
Chen, Wenxiong
Li, Congming
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
Shanghai Jiao Tong Univ, Inst Nat Sci, Shanghai 200240, Peoples R China
Univ Colorado, Dept Appl Math, Boulder, CO 80309 USANankai Univ, Sch Math Sci, Tianjin, Peoples R China
机构:
UNMdP, Ctr Marplatense Invest Matemdt, CIC, Mar Del Plata, ArgentinaUNMdP, Ctr Marplatense Invest Matemdt, CIC, Mar Del Plata, Argentina
Molina, Sandra
Salort, Ariel
论文数: 0引用数: 0
h-index: 0
机构:
UBA, Inst Calculo, CONICET, Buenos Aires, DF, Argentina
Univ Buenos Aires, Dept Matemat, FCEN, Ciudad Univ,Pabellon 1,C1428EGA,Av Cantilo S-N, Buenos Aires, DF, ArgentinaUNMdP, Ctr Marplatense Invest Matemdt, CIC, Mar Del Plata, Argentina
Salort, Ariel
Vivas, Hernan
论文数: 0引用数: 0
h-index: 0
机构:
UNMdP, Ctr Marplatense Invest Matemdt, CIC, Mar Del Plata, Argentina
UBA, Inst Calculo, CONICET, Buenos Aires, DF, ArgentinaUNMdP, Ctr Marplatense Invest Matemdt, CIC, Mar Del Plata, Argentina
机构:
Liaoning Shihua Univ, Sch Sci, Fushun 113001, Peoples R China
Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R ChinaLiaoning Shihua Univ, Sch Sci, Fushun 113001, Peoples R China
Guo, Zhenyu
Luo, Senping
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R ChinaLiaoning Shihua Univ, Sch Sci, Fushun 113001, Peoples R China
Luo, Senping
Zou, Wenming
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R ChinaLiaoning Shihua Univ, Sch Sci, Fushun 113001, Peoples R China