Maximum Principles for Laplacian and Fractional Laplacian with Critical Integrability

被引:0
|
作者
Congming Li
Yingshu Lü
机构
[1] Shanghai Jiao Tong University,School of Mathematical Sciences, CMA
[2] Shanghai Jiao Tong University,Shanghai
来源
关键词
Maximum principles; Laplacian; Fractional Laplacian; Critical integrability; 35B50; 35D30; 35J15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the maximum principles for Laplacian and fractional Laplacian with critical integrability. We first consider the critical cases for Laplacian with zero-order term and first-order term. It is well known that for the Laplacian with zero-order term -Δ+c(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\Delta +c(x)$$\end{document} in B1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_1$$\end{document}, c(x)∈Lp(B1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c(x)\in L^p(B_1)$$\end{document}(B1⊂Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_1\subset \textbf{R}^n$$\end{document}), the critical case for the maximum principle is p=n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=\frac{n}{2}$$\end{document}. We show that the critical condition c(x)∈Ln2(B1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c(x)\in {L^{\frac{n}{2}}(B_1)}$$\end{document} is not enough to guarantee the strong maximum principle. For the Laplacian with first-order term -Δ+b→(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\Delta +\vec {b}(x)$$\end{document}(b→(x)∈Lp(B1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vec {b}(x)\in L^p(B_1)$$\end{document}), the critical case is p=n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=n$$\end{document}. In this case, we establish the maximum principle and strong maximum principle for Laplacian with first-order term. We also extend some of the maximum principles above to the fractional Laplacian. We replace the classical lower semi-continuous condition on solutions for the fractional Laplacian with some integrability condition. Then we establish a series of maximum principles for fractional Laplacian under some integrability condition on the coefficients. These conditions are weaker than the previous regularity conditions. The weakened conditions on the coefficients and the non-locality of the fractional Laplacian bring in some new difficulties. Some new techniques are developed.
引用
收藏
相关论文
共 50 条
  • [1] Maximum Principles for Laplacian and Fractional Laplacian with Critical Integrability
    Li, Congming
    Lue, Yingshu
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (07)
  • [2] The maximum principles for fractional Laplacian equations and their applications
    Cheng, Tingzhi
    Huang, Genggeng
    Li, Congming
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2017, 19 (06)
  • [3] Maximum principles for the fractional p-Laplacian and symmetry of solutions
    Chen, Wenxiong
    Li, Congming
    ADVANCES IN MATHEMATICS, 2018, 335 : 735 - 758
  • [4] On the strong maximum principle for a fractional Laplacian
    Nguyen Ngoc Trong
    Do Duc Tan
    Bui Le Trong Thanh
    Archiv der Mathematik, 2021, 117 : 203 - 213
  • [5] On the strong maximum principle for a fractional Laplacian
    Trong, Nguyen Ngoc
    Tan, Do Duc
    Thanh, Bui Le Trong
    ARCHIV DER MATHEMATIK, 2021, 117 (02) : 203 - 213
  • [6] Maximum principles, Liouville theorem and symmetry results for the fractional g-Laplacian
    Molina, Sandra
    Salort, Ariel
    Vivas, Hernan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 212
  • [7] On critical systems involving fractional Laplacian
    Guo, Zhenyu
    Luo, Senping
    Zou, Wenming
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 446 (01) : 681 - 706
  • [8] CRITICAL SYSTEM INVOLVING FRACTIONAL LAPLACIAN
    Zhen, Maoding
    He, Jinchun
    Xu, Haoyun
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2019, 18 (01) : 237 - 253
  • [9] A fractional Laplacian problem with critical nonlinearity
    Long, Xiuhong
    Wang, Jixiu
    AIMS MATHEMATICS, 2021, 6 (08): : 8415 - 8425
  • [10] Principal curves to fractional m-Laplacian systems and related maximum and comparison principles
    de Araujo, Anderson L. A.
    Leite, Edir J. F.
    Medeiros, Aldo H. S.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2024, 27 (04) : 1948 - 1971