Susceptibility Sets and the Final Outcome of Collective Reed–Frost Epidemics

被引:0
|
作者
Frank Ball
机构
[1] University of Nottingham,School of Mathematical Sciences
关键词
Total size; Severity; Susceptibility set; Symmetric sampling procedure; Gontcharoff polynomial; General final state random variables; 92D30; 60K99; 05C80;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with exact results for the final outcome of stochastic SIR (susceptible →\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\rightarrow $\end{document} infective →\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\rightarrow $\end{document} recovered) epidemics among a closed, finite and homogeneously mixing population. The factorial moments of the number of initial susceptibles who ultimately avoid infection by such an epidemic are shown to be intimately related to the concept of a susceptibility set. This connection leads to simple, probabilistically illuminating proofs of exact results concerning the total size and severity of collective Reed–Frost epidemic processes, in terms of Gontcharoff polynomials, first obtained in a series of papers by Claude Lefèvre and Philippe Picard. The proofs extend easily to include general final state random variables defined on SIR epidemics, and also to multitype epidemics.
引用
收藏
页码:401 / 421
页数:20
相关论文
共 9 条