Conservative and fourth-order compact difference schemes for the generalized Rosenau–Kawahara–RLW equation

被引:0
|
作者
Xiaofeng Wang
Hong Cheng
Weizhong Dai
机构
[1] Minnan Normal University,School of Mathematics and Statistics
[2] Louisiana Tech University,Mathematics and Statistics, College of Engineering and Science
来源
关键词
Rosenau–Kawahara–RLW equation; Conservation; Compact difference scheme; Stability; Convergence;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we present two conservative and fourth-order compact finite-difference schemes for solving the generalized Rosenau–Kawahara–RLW equation. The proposed schemes are energy-conserved, convergent, and unconditionally stable, and the numerical convergence orders in both l2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{2}$$\end{document}-norm and l∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{\infty }$$\end{document}-norm are of O(τ2+h4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\tau ^{2}+h^{4})$$\end{document}. Numerical experiments demonstrate that the present schemes are efficient and reliable.
引用
收藏
页码:1491 / 1514
页数:23
相关论文
共 50 条