What is the Optimal Shape of a Pipe?

被引:0
|
作者
Antoine Henrot
Yannick Privat
机构
[1] Nancy Université,Institut Élie Cartan, UMR 7502
[2] CNRS,undefined
[3] INRIA,undefined
关键词
Lateral Boundary; Hausdorff Distance; Stokes Problem; Stokes System; Adjoint Problem;
D O I
暂无
中图分类号
学科分类号
摘要
We consider an incompressible fluid in a three-dimensional pipe, following the Navier–Stokes system with classical boundary conditions. We are interested in the following question: is there any optimal shape for the criterion “energy dissipated by the fluid”? Moreover, is the cylinder the optimal shape? We prove that there exists an optimal shape in a reasonable class of admissible domains, but the cylinder is not optimal. For that purpose, we define the first order optimality condition, thanks to the adjoint state and we prove that it is impossible that the adjoint state be a solution of this over-determined system when the domain is the cylinder. At last, we show some numerical simulations for that problem.
引用
收藏
页码:281 / 302
页数:21
相关论文
共 50 条
  • [1] What is the Optimal Shape of a Pipe?
    Henrot, Antoine
    Privat, Yannick
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 196 (01) : 281 - 302
  • [2] The optimal shape of a pipe
    Schulz, Andreas
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2013, 64 (04): : 1177 - 1185
  • [3] The optimal shape of a pipe
    Andreas Schulz
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2013, 64 : 1177 - 1185
  • [4] What is the optimal shape of a city?
    Bender, CM
    Bender, MA
    Demaine, ED
    Fekete, SP
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (01): : 147 - 159
  • [5] What is the optimal shape of a snap ring?
    Stromberg, Niclas
    [J]. PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE 2007, VOL 5, PTS A-C,, 2008, : 407 - 412
  • [6] WHAT IS THE OPTIMAL URETEROSCOPE SHAPE TO REDUCE INTRAPELVIC PRESSURE?
    Wiener, Scott
    Sangani, Ashok
    [J]. JOURNAL OF UROLOGY, 2020, 203 : E627 - E627
  • [7] Optimal fin shape in finned double pipe with fully developed laminar flow
    Iqbal, Z.
    Syed, K. S.
    Ishaq, M.
    [J]. APPLIED THERMAL ENGINEERING, 2013, 51 (1-2) : 1202 - 1223
  • [8] Numerical exploration of optimal microgroove shape in loop-heat-pipe evaporator
    Yamada, Yuya
    Nishikawara, Masahito
    Yanada, Hideki
    [J]. JOURNAL OF THERMAL SCIENCE AND TECHNOLOGY, 2020, 15 (03): : 1 - 15
  • [9] WHAT IS THE OPTIMAL SHAPE OF A FIN FOR ONE-DIMENSIONAL HEAT CONDUCTION?
    Marck, Gilles
    Nadin, Gregoire
    Privat, Yannick
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2014, 74 (04) : 1194 - 1218
  • [10] Optimal Scheduling of Pipe Replacement
    Boulos, Paul F.
    [J]. JOURNAL AMERICAN WATER WORKS ASSOCIATION, 2017, 109 (01): : 42 - 46