Partition functions for equivariantly twisted N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} gauge theories on toric Kähler manifolds

被引:0
|
作者
Diego Rodriguez-Gomez
Johannes Schmude
机构
[1] Universidad de Oviedo,Department of Physics
关键词
Supersymmetric gauge theory; Nonperturbative Effects; Extended Supersymmetry; Solitons Monopoles and Instantons;
D O I
10.1007/JHEP05(2015)111
中图分类号
学科分类号
摘要
We consider N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} supersymmetric pure gauge theories on toric Kähler manifolds, with particular emphasis on ℂℙ2. By choosing a vector generating a U(1) action inside the torus of the manifold, we construct equivariantly twisted theories. Then, using localization, we compute their supersymmetric partition functions. As expected, these receive contributions from a classical, a one-loop, and an instanton term. It turns out that the one-loop term is trivial and that the instanton contributions are localized at the fixed points of the U(1). In fact the full partition function can be re-written in a factorized form with contributions from each of the fixed points. The full significance of this is yet to be understood.
引用
收藏
相关论文
共 50 条