Entire Solutions of Two Certain Types of Non-linear Differential-Difference Equations

被引:0
|
作者
Wei Chen
Peichu Hu
Qiong Wang
机构
[1] Chongqing University of Posts and Telecommunications,School of Sciences
[2] Shandong University,School of Mathematics
关键词
Entire solution; Non-linear differential-difference equations; Nevanlinna theory; 39B32; 30D35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we describe entire solutions for two certain types of non-linear differential-difference equations of the form fn(z)+ωfn-1(z)f′(z)+q(z)eQ(z)f(z+c)=u(z)ev(z),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} f^n(z)+\omega f^{n-1}(z)f'(z)+q(z)e^{Q(z)}f(z+c)=u(z)e^{v(z)}, \end{aligned}$$\end{document}and fn(z)+ωfn-1(z)f′(z)+q(z)eQ(z)f(z+c)=p1eλz+p2e-λz,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} f^n(z)+\omega f^{n-1}(z)f'(z)+q(z)e^{Q(z)}f(z+c)=p_1e^{\lambda z}+p_2e^{-\lambda z}, \end{aligned}$$\end{document}where q, Q, u, v are non-constant polynomials, c,λ,p1,p2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c,\lambda ,p_1,p_2$$\end{document} are non-zero constants, and ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document} is a constant. Our results improve and generalize some previous results.
引用
收藏
页码:199 / 218
页数:19
相关论文
共 50 条
  • [1] Entire Solutions of Two Certain Types of Non-linear Differential-Difference Equations
    Chen, Wei
    Hu, Peichu
    Wang, Qiong
    [J]. COMPUTATIONAL METHODS AND FUNCTION THEORY, 2021, 21 (02) : 199 - 218
  • [2] On Entire Solutions of Two Certain Types of Non-Linear Differential-Difference Equations
    LI Jingjing
    HUANG Zhigang
    [J]. Wuhan University Journal of Natural Sciences, 2022, (03) : 195 - 200
  • [3] Existence of entire solutions of some non-linear differential-difference equations
    Chen, Minfeng
    Gao, Zongsheng
    Du, Yunfei
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [4] Existence of entire solutions of some non-linear differential-difference equations
    Minfeng Chen
    Zongsheng Gao
    Yunfei Du
    [J]. Journal of Inequalities and Applications, 2017
  • [5] ON ENTIRE SOLUTIONS OF CERTAIN TYPE OF DIFFERENTIAL-DIFFERENCE EQUATIONS
    Chen, Zong-Xuan
    Yang, Chung-Chun
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2014, 18 (03): : 677 - 685
  • [6] Entire solutions of certain class of differential-difference equations
    Zhang, Fengrong
    Liu, Nana
    Lu, Weiran
    Yang, Chungchun
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2015, : 1 - 9
  • [7] Entire solutions of certain class of differential-difference equations
    Fengrong Zhang
    Nana Liu
    Weiran Lü
    Chungchun Yang
    [J]. Advances in Difference Equations, 2015
  • [8] ON ENTIRE SOLUTIONS OF TWO TYPES OF SYSTEMS OF COMPLEX DIFFERENTIAL-DIFFERENCE EQUATIONS
    高凌云
    [J]. Acta Mathematica Scientia(English Series)., 2017, 37 (01) - 194
  • [9] On Meromorphic Solutions of Non-linear Differential-Difference Equations
    Zhao, Mingxin
    Huang, Zhigang
    [J]. JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2023, 30 (04) : 1444 - 1466
  • [10] On Meromorphic Solutions of Non-linear Differential-Difference Equations
    MingXin Zhao
    Zhigang Huang
    [J]. Journal of Nonlinear Mathematical Physics, 2023, 30 : 1444 - 1466