A deep learning method based on convolutional neural network for automatic modulation classification of wireless signals

被引:1
|
作者
Yu Xu
Dezhi Li
Zhenyong Wang
Qing Guo
Wei Xiang
机构
[1] Harbin Institute of Technology,School of Electronics and Information Engineering
来源
Wireless Networks | 2019年 / 25卷
关键词
Modulation classification; Deep learning; Convolutional neural network; Wireless signal; Transfer learning; Denoising autoencoder;
D O I
暂无
中图分类号
学科分类号
摘要
Automatic modulation classification plays an important role in many fields to identify the modulation type of wireless signals in order to recover signals by demodulation. In this paper, we contribute to explore the suitable architecture of deep learning method in the domain of communication signal recognition. Based on architecture analysis of the convolutional neural network, we used real signal data generated by instrument as dataset, and achieved compatible recognition accuracy of modulation classification compared with several representative structure. We state that the deeper network architecture is not suitable for the signal recognition due to its different characteristic. In addition, we also discuss the difficult of training algorithm in deep learning methods and employ the transfer learning method in order to reap the benefits, which stabilize the training process and lift the performance. Finally, we adopt the denoising autoencoder to preprocess the received data and provide the ability to resist finite perturbations of the input. It contributes to a higher recognition accuracy and it also provide a new idea to design the denoising modulation recognition model.
引用
收藏
页码:3735 / 3746
页数:11
相关论文
共 50 条
  • [1] A deep learning method based on convolutional neural network for automatic modulation classification of wireless signals
    Xu, Yu
    Li, Dezhi
    Wang, Zhenyong
    Guo, Qing
    Xiang, Wei
    [J]. WIRELESS NETWORKS, 2019, 25 (07) : 3735 - 3746
  • [2] A Convolutional and Transformer Based Deep Neural Network for Automatic Modulation Classification
    Shanchuan Ying
    Sai Huang
    Shuo Chang
    Zheng Yang
    Zhiyong Feng
    Ningyan Guo
    [J]. China Communications, 2023, 20 (05) : 135 - 147
  • [3] A convolutional and transformer based deep neural network for automatic modulation classification
    Ying, Shanchuan
    Huang, Sai
    Chang, Shuo
    Yang, Zheng
    Feng, Zhiyong
    Guo, Ningyan
    [J]. CHINA COMMUNICATIONS, 2023, 20 (05) : 135 - 147
  • [4] A Hierarchical Classification Head Based Convolutional Gated Deep Neural Network for Automatic Modulation Classification
    Chang, Shuo
    Zhang, Ruiyun
    Ji, Kejia
    Huang, Sai
    Feng, Zhiyong
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (10) : 8713 - 8728
  • [5] Modulation Classification Using Convolutional Neural Network Based Deep Learning Model
    Peng, Shengliang
    Jiang, Hanyu
    Wang, Huaxia
    Alwageed, Hathal
    Yao, Yu-Dong
    [J]. 2017 26TH WIRELESS AND OPTICAL COMMUNICATION CONFERENCE (WOCC), 2017,
  • [6] Deep Convolutional Neural Network with Wavelet Decomposition for Automatic Modulation Classification
    Wang, Hongyu
    Ding, Wenrui
    Zhang, Duona
    Zhang, Baochang
    [J]. PROCEEDINGS OF THE 15TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2020), 2020, : 1566 - 1571
  • [7] Automatic Modulation Classification: Convolutional Deep Learning Neural Networks Approaches
    Hussein, Hany S.
    Essai Ali, Mohamed Hassan
    Ismeil, Mohammed
    Shaaban, Mohamed N.
    Mohamed, Mona Lotfy
    Atallah, Hany A.
    [J]. IEEE ACCESS, 2023, 11 : 98695 - 98705
  • [8] Deep Convolutional Network Method for Automatic Sleep Stage Classification Based on Neurophysiological Signals
    Sun, Yudong
    Wang, Bei
    Jin, Jing
    Wang, Xingyu
    [J]. 2018 11TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2018), 2018,
  • [9] Multitask-Learning-Based Deep Neural Network for Automatic Modulation Classification
    Chang, Shuo
    Huang, Sai
    Zhang, Ruiyun
    Feng, Zhiyong
    Liu, Liang
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (03): : 2192 - 2206
  • [10] Robust Automatic Modulation Classification Using Convolutional Deep Neural Network Based on Scalogram Information
    Abdulkarem, Ahmed Mohammed
    Abedi, Firas
    Ghanimi, Hayder M. A.
    Kumar, Sachin
    Al-Azzawi, Waleed Khalid
    Abbas, Ali Hashim
    Abosinnee, Ali S.
    Almaameri, Ihab Mahdi
    Alkhayyat, Ahmed
    [J]. COMPUTERS, 2022, 11 (11)