Application of Ti-in-zircon thermometry to granite studies: problems and possible solutions

被引:0
|
作者
David Schiller
Fritz Finger
机构
[1] University of Salzburg,Department Chemistry and Physics of Materials
关键词
Ti-in-zircon thermometry; Granite petrology; TiO; activity; Zircon saturation;
D O I
暂无
中图分类号
学科分类号
摘要
The application of the Ti-in-zircon thermometer to granitic rock requires consideration of aTiO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_{{{\text{TiO}}_{2} }}$$\end{document} and aSiO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_{{{\text{SiO}}_{2} }}$$\end{document} during zircon crystallization. Thermodynamic software programs such as rhyolite-MELTS or Perple_X permit the estimation of aTiO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_{{{\text{TiO}}_{2} }}$$\end{document} and aSiO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_{{{\text{SiO}}_{2} }}$$\end{document} values from whole-rock geochemical data as a function of pressure and temperature. Model calculations carried out on a set of 14 different granite types at 2 kbar, 5 kbar, and H2O = 3 wt% show aSiO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_{{{\text{SiO}}_{2} }}$$\end{document} during zircon crystallization close to 1 (0.75–1) and aTiO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_{{{\text{TiO}}_{2} }}$$\end{document} generally far below unity (0.1–0.6). This would suggest that Ti-in-zircon temperatures for granites must be significantly upward corrected relative to the original TiO2- and SiO2-saturated calibration of the thermometer. Both the rhyolite-MELTS and Perple_X calculations indicate that aTiO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_{{{\text{TiO}}_{2} }}$$\end{document} is typically around 0.5 in ilmenite-bearing granites. Thus, for ilmenite-series granites (that is, almost all S-type and many I-type granites), it could be a reasonable first order approximation to apply a constant temperature correction of + 70 °C to the Ti-in-zircon thermometer. Granites lacking the paragenesis zircon–ilmenite, that is, some A-type granites and a few special I-type granites may have even lower aTiO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_{{{\text{TiO}}_{2} }}$$\end{document} (0.1–0.5) and some of them may require a huge upward correction of Ti-in-zircon temperatures on the order of 100–200 °C. Using a set of Ti-in-zircon measurements from a Variscan granite of the Bohemian Massif, we introduce a novel T-dependent aTiO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_{{{\text{TiO}}_{2} }}$$\end{document} and aSiO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_{{{\text{SiO}}_{2} }}$$\end{document} correction of Ti-in-zircon calculated temperatures which is based on aTiO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_{{{\text{TiO}}_{2} }}$$\end{document}-, aSiO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_{{{\text{SiO}}_{2} }}$$\end{document}–T functions modelled with rhyolite-MELTS. This method takes into account that early and late zircons in granitic systems may crystallize at different aSiO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_{{{\text{SiO}}_{2} }}$$\end{document} and aTiO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_{{{\text{TiO}}_{2} }}$$\end{document}. Furthermore, we highlight the usefulness of comparing the corrected results of Ti-in-zircon thermometry with bulk-rock-Zr-based zircon solubility thermometry and ideal zircon crystallization temperature distributions for granites, and we present a graphical method that enables this comparison. In addition, this paper addresses the problem that Ti-in-zircon measurements are commonly collected with only moderate spatial analytical resolution, which leads to an averaging effect and to difficulties in recording accurate crystallization temperatures. Therefore, we propose that Ti-in-zircon thermometry for granites should generally rely on the more representative median-T (Tmed) value of a series of zircon analyses. Peak magma temperatures will be, in general, 35–50 °C above Tmed, as can be modelled using zircon crystallization temperature distributions.
引用
收藏
相关论文
共 38 条
  • [1] Application of Ti-in-zircon thermometry to granite studies: problems and possible solutions
    Schiller, David
    Finger, Fritz
    [J]. CONTRIBUTIONS TO MINERALOGY AND PETROLOGY, 2019, 174 (06)
  • [2] Diffusion anisotropy of Ti in zircon and implications for Ti-in-zircon thermometry
    Bloch, E. M.
    Jollands, M. C.
    Tollan, P.
    Plane, F.
    Bouvier, A-S
    Hervig, R.
    Berry, A. J.
    Zaubitzer, C.
    Escrig, S.
    Muntener, O.
    Ibanez-Mejia, M.
    Alleon, J.
    Meibom, A.
    Baumgartner, L. P.
    Marin-Carbonne, J.
    Newville, M.
    [J]. EARTH AND PLANETARY SCIENCE LETTERS, 2022, 578
  • [3] Ti-in-zircon thermometry: applications and limitations
    Fu, Bin
    Page, F. Zeb
    Cavosie, Aaron J.
    Fournelle, John
    Kita, Noriko T.
    Lackey, Jade Star
    Wilde, Simon A.
    Valley, John W.
    [J]. CONTRIBUTIONS TO MINERALOGY AND PETROLOGY, 2008, 156 (02) : 197 - 215
  • [4] Ti-in-zircon thermometry: applications and limitations
    Bin Fu
    F. Zeb Page
    Aaron J. Cavosie
    John Fournelle
    Noriko T. Kita
    Jade Star Lackey
    Simon A. Wilde
    John W. Valley
    [J]. Contributions to Mineralogy and Petrology, 2008, 156 : 197 - 215
  • [5] TZT: a windows program for calculating zircon crystallization temperature based on Ti-in-zircon thermometry
    Ahmed M. Dardier
    Osama K. Dessouky
    Mohammed Z. El-Bialy
    [J]. Earth Science Informatics, 2021, 14 : 1679 - 1684
  • [6] Ti-in-zircon thermometry applied to contrasting Archean metamorphic and igneous systems
    Hiess, Joe
    Nutman, Allen P.
    Bennett, Vickie C.
    Holden, Peter
    [J]. CHEMICAL GEOLOGY, 2008, 247 (3-4) : 323 - 338
  • [7] TZT: a windows program for calculating zircon crystallization temperature based on Ti-in-zircon thermometry
    Dardier, Ahmed M.
    Dessouky, Osama K.
    El-Bialy, Mohammed Z.
    [J]. EARTH SCIENCE INFORMATICS, 2021, 14 (03) : 1679 - 1684
  • [8] Isotope-dilution anchoring of zircon reference materials for accurate Ti-in-zircon thermometry
    Szymanowski, Dawid
    Fehr, Manuela A.
    Guillong, Marcel
    Coble, Matthew A.
    Wotzlaw, Jorn-Frederik
    Nasdala, Lutz
    Ellis, Ben S.
    Bachmann, Olivier
    Schonbachler, Maria
    [J]. CHEMICAL GEOLOGY, 2018, 481 : 146 - 154
  • [9] Ti-in-zircon thermometry and crystallization modeling support hot Grenville granite hypothesis (vol 42, pg 267, 2014)
    Moecher, D. P.
    McDowell, S. M.
    Samson, S. D.
    Miller, C. F.
    [J]. GEOLOGY, 2014, 42 (03) : 267 - 270
  • [10] Ti-in-zircon thermometry and crystallization modeling support hot Grenville granite hypothesis (vol 42, pg 267, 2013)
    Moecher, D. P.
    McDowell, S. M.
    Samson, S. D.
    Miller, C. F.
    [J]. GEOLOGY, 2014, 42 (04)