Metric structures that admit totally geodesic foliations

被引:0
|
作者
Vladimir Rovenski
机构
[1] University of Haifa,Department of Mathematics
来源
Journal of Geometry | 2023年 / 114卷
关键词
Framed ; -structure; Killing vector field; Totally geodesic distribution; -structure; -structure; 53C15; 53C25; 53D15;
D O I
暂无
中图分类号
学科分类号
摘要
Motivated by the problem of finding suitable structures on a manifold M to obtain totally geodesic foliations, we recently introduced the weakened framed f-structure, i.e., the complex structure on f(TM) is replaced by a nonsingular skew-symmetric tensor, and its subclasses of weak K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {K}}}$$\end{document}-, S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {S}}}$$\end{document}-, and C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {C}}}$$\end{document}- structures. This allow us to take a fresh look at the classical f-structure by K. Yano, and subsequently studied by a number of geometers. We demonstrate this by generalizing several known results on framed f-manifolds. First, we express the covariant derivative of f using a new tensor on a metric weak f-structure, then we prove that on a weak K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {K}}}$$\end{document}-manifold the characteristic vector fields are Killing and kerf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ker f$$\end{document} defines a totally geodesic foliation, an S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {S}}}$$\end{document}-structure is rigid, i.e., our weak S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {S}}}$$\end{document}-structure is an S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {S}}}$$\end{document}-structure, and a metric weak f-structure with parallel tensor f reduces to a weak C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {C}}}$$\end{document}-structure. We obtain several corollaries for weak almost contact, weak cosymplectic and weak Sasakian structures.
引用
收藏
相关论文
共 50 条