Generalized Tweakable Even-Mansour Cipher and Its Applications

被引:0
|
作者
Ping Zhang
Hong-Gang Hu
机构
[1] Chinese Academy of Sciences,Key Laboratory of Electromagnetic Space Information
[2] University of Science and Technology of China,School of Information Science and Technology
关键词
tweakable blockcipher; H-coefficients technique; authentication; authenticated encryption; provable security;
D O I
暂无
中图分类号
学科分类号
摘要
This paper describes a generalized tweakable blockcipher HPH (Hash-Permutation-Hash), which is based on a public random permutation P and a family of almost-XOR-universal hash functions H=HKK∈K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{H}={\left\{ HK\right\}}_{K\in \mathcal{K}} $$\end{document} as a tweak and key schedule, and defined as y = HPHK((t1, t2), x) = P(x ⊕ HK(t1)) ⊕ HK(t2), where K is a key randomly chosen from a key space K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{K} $$\end{document}, (t1, t2) is a tweak chosen from a valid tweak space T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{T} $$\end{document}, x is a plaintext, and y is a ciphertext. We prove that HPH is a secure strong tweakable pseudorandom permutation (STPRP) by using H-coefficients technique. Then we focus on the security of HPH against multi-key and related-key attacks. We prove that HPH achieves both multi-key STPRP security and related-key STPRP security. HPH can be extended to wide applications. It can be directly applied to authentication and authenticated encryption modes. We apply HPH to PMAC1 and OPP, provide an improved authentication mode HPMAC and a new authenticated encryption mode OPH, and prove that the two modes achieve single-key security, multi-key security, and related-key security.
引用
收藏
页码:1261 / 1277
页数:16
相关论文
共 50 条
  • [1] Generalized Tweakable Even-Mansour Cipher and Its Applications
    Zhang, Ping
    Hu, Hong-Gang
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2018, 33 (06) : 1261 - 1277
  • [2] Universal tweakable Even-Mansour cipher and its applications
    Zhang, Ping
    FRONTIERS OF COMPUTER SCIENCE, 2023, 17 (04)
  • [3] Universal tweakable Even-Mansour cipher and its applications
    ZHANG Ping
    Frontiers of Computer Science, 2023, 17 (04)
  • [4] Multi-user security of the tweakable Even-Mansour cipher
    Zhang, Ping
    Yuan, Qian
    Hu, Honggang
    Wang, Peng
    SCIENCE CHINA-INFORMATION SCIENCES, 2021, 64 (03)
  • [5] Multi-user security of the tweakable Even-Mansour cipher
    PingZHANG
    QianYUAN
    HonggangHU
    PengWANG
    Science China(Information Sciences), 2021, 64 (03) : 223 - 225
  • [6] Multi-user security of the tweakable Even-Mansour cipher
    Ping Zhang
    Qian Yuan
    Honggang Hu
    Peng Wang
    Science China Information Sciences, 2021, 64
  • [7] Forking Tweakable Even-Mansour Ciphers
    Kim, Hwigyeom
    Lee, Yeongmin
    Lee, Jooyoung
    IACR TRANSACTIONS ON SYMMETRIC CRYPTOLOGY, 2020, 2020 (04) : 71 - 87
  • [8] XPX: Generalized Tweakable Even-Mansour with Improved Security Guarantees
    Mennink, Bart
    ADVANCES IN CRYPTOLOGY - CRYPTO 2016, PT I, 2016, 9814 : 64 - 94
  • [9] Post-quantum Security of Tweakable Even-Mansour, and Applications
    Alagic, Gorjan
    Bai, Chen
    Katz, Jonathan
    Majenz, Christian
    Struck, Patrick
    ADVANCES IN CRYPTOLOGY, PT I, EUROCRYPT 2024, 2024, 14651 : 310 - 338
  • [10] Multi-key Analysis of Tweakable Even-Mansour with Applications to Minalpher and OPP
    Guo, Zhiyuan
    Wu, Wenling
    Liu, Renzhang
    Zhang, Liting
    IACR TRANSACTIONS ON SYMMETRIC CRYPTOLOGY, 2016, 2016 (02) : 288 - 306