Uniformly best estimation in linear regression when prior information is fuzzy

被引:0
|
作者
Bernhard F. Arnold
Peter Stahlecker
机构
[1] Universität Hamburg,Institut für Statistik und Ökonometrie
来源
Statistical Papers | 2010年 / 51卷
关键词
Ellipsoidal ; -cuts; Fuzzy sets; Linear affine estimation; Linear regression; Löwner ordering; Prior information; Relative squared error; Uniformly best estimation; Zadeh’s extension principle;
D O I
暂无
中图分类号
学科分类号
摘要
Modeling prior information as a fuzzy set and using Zadeh’s extension principle, a general approach is presented how to rate linear affine estimators in linear regression. This general approach is applied to fuzzy prior information sets given by ellipsoidal α-cuts. Here, in an important and meaningful subclass, a uniformly best linear affine estimator can be determined explicitly. Surprisingly, such a uniformly best linear affine estimator is optimal with respect to a corresponding relative squared error approach. Two illustrative special cases are discussed, where a generalized least squares estimator on the one hand and a general ridge or Kuks–Olman estimator on the other hand turn out to be uniformly best.
引用
收藏
页码:485 / 496
页数:11
相关论文
共 50 条