Mersenne numbers which are products of two Pell numbers

被引:0
|
作者
Murat Alan
Kadriye Simsek Alan
机构
[1] Yildiz Technical University Mathematics Department,
[2] Davutpasa Campus,undefined
[3] Yildiz Technical University Department of Mathematical Engineering,undefined
[4] Davutpasa Campus,undefined
来源
Boletín de la Sociedad Matemática Mexicana | 2022年 / 28卷
关键词
Pell numbers; Mersenne numbers; Diophantine equations; Linear forms in logarithms; 11B39; 11J86; 11D61;
D O I
暂无
中图分类号
学科分类号
摘要
Let (Pn)n≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(P_n)_{n\ge 0}$$\end{document} be the Pell sequence defined by P0=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ P_0=0 $$\end{document}, P1=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ P_1=1 $$\end{document} and Pn+2=2Pn+1+Pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ P_{n+2}=2P_{n+1}+P_{n} $$\end{document} for n≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ n \ge 0 $$\end{document} and Mk=2k-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ M_k=2^k-1 $$\end{document} be the k-th Mersenne number for k≥1.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ k\ge 1. $$\end{document} We show that the Diophantine equation PnPm=Mk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ P_nP_m=M_k$$\end{document} with m≤n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ m\le n $$\end{document} has only the unique positive integer solution (n,m,k)=(1,1,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n,m,k)=(1,1,1)$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Mersenne numbers which are products of two Pell numbers
    Alan, Murat
    Alan, Kadriye Simsek
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2022, 28 (02):
  • [2] FIBONACCI NUMBERS WHICH ARE PRODUCTS OF TWO PELL NUMBERS
    Ddamulira, Mahadi
    Luca, Florian
    Rakotomalala, Mihaja
    FIBONACCI QUARTERLY, 2016, 54 (01): : 11 - 18
  • [3] Fibonacci numbers which are products of three Pell numbers and Pell numbers which are products of three Fibonacci numbers
    Salah Eddine Rihane
    Youssouf Akrour
    Abdelaziz El Habibi
    Boletín de la Sociedad Matemática Mexicana, 2020, 26 : 895 - 910
  • [4] Fibonacci numbers which are products of three Pell numbers and Pell numbers which are products of three Fibonacci numbers
    Rihane, Salah Eddine
    Akrour, Youssouf
    El Habibi, Abdelaziz
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2020, 26 (03): : 895 - 910
  • [5] Repdigits base b as products of two Pell numbers or Pell–Lucas numbers
    Fatih Erduvan
    Refik Keskin
    Zafer Şiar
    Boletín de la Sociedad Matemática Mexicana, 2021, 27
  • [6] ON THE JACOBSTHAL NUMBERS WHICH ARE THE PRODUCT OF TWO MODIFIED PELL NUMBERS
    Dasdemir, Ahmet
    Varol, Mehmet
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2024, 73 (03): : 604 - 610
  • [7] Repdigits base b as products of two Pell numbers or Pell-Lucas numbers
    Erduvan, Fatih
    Keskin, Refik
    Siar, Zafer
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2021, 27 (03):
  • [8] On the X-coordinates of Pell equations which are products of two Fibonacci numbers
    Kafle, Bir
    Luca, Florian
    Montejano, Amanda
    Szalay, Laszlo
    Togbe, Alain
    JOURNAL OF NUMBER THEORY, 2019, 203 : 310 - 333
  • [9] PELL AND PELL-LUCAS NUMBERS WHICH ARE CONCATENATIONS OF TWO REPDIGITS
    Duman, Merve Guney
    Erduvan, Fatih
    HONAM MATHEMATICAL JOURNAL, 2023, 45 (04): : 572 - 584
  • [10] Bipartite Graphs Associated with Pell, Mersenne and Perrin Numbers
    Oteles, Ahmet
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2019, 27 (02): : 109 - 120