Hamiltonian stationary tori in Kähler manifolds

被引:0
|
作者
Adrian Butscher
Justin Corvino
机构
[1] Stanford University,Department of Computer Science
[2] Lafayette College,Department of Mathematics
关键词
58J37; 35J20; 35J48; 53C15; 53C21; 53C38; 53C55;
D O I
暂无
中图分类号
学科分类号
摘要
A Hamiltonian stationary Lagrangian submanifold of a Kähler manifold is a Lagrangian submanifold whose volume is stationary under Hamiltonian variations. We find a sufficient condition on the curvature of a Kähler manifold of real dimension four to guarantee the existence of a family of small Hamiltonian stationary Lagrangian tori.
引用
收藏
页码:63 / 100
页数:37
相关论文
共 50 条
  • [1] The existence of Hamiltonian stationary Lagrangian tori in Kähler manifolds of any dimension
    Yng-Ing Lee
    [J]. Calculus of Variations and Partial Differential Equations, 2012, 45 : 231 - 251
  • [2] Hamiltonian stability of Lagrangian tori in toric Kähler manifolds
    Hajime Ono
    [J]. Annals of Global Analysis and Geometry, 2007, 31 : 329 - 343
  • [3] Hamiltonian stationary tori in Kahler manifolds
    Butscher, Adrian
    Corvino, Justin
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2012, 45 (1-2) : 63 - 100
  • [4] Hamiltonian mechanics on Kähler manifolds
    Rong-ye Zhang
    [J]. Applied Mathematics and Mechanics, 2006, 27 : 353 - 362
  • [5] Homogeneous Kähler and Hamiltonian manifolds
    Bruce Gilligan
    Christian Miebach
    Karl Oeljeklaus
    [J]. Mathematische Annalen, 2011, 349 : 889 - 901
  • [6] The existence of Hamiltonian stationary Lagrangian tori in Kahler manifolds of any dimension
    Lee, Yng-Ing
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2012, 45 (1-2) : 231 - 251
  • [7] On the compactness of Hamiltonian stationary Lagrangian surfaces in Kähler surfaces
    Jingyi Chen
    John Man Shun Ma
    [J]. Calculus of Variations and Partial Differential Equations, 2021, 60
  • [8] On Hamiltonian stationary Lagrangian spheres in non-Einstein Kähler surfaces
    Ildefonso Castro
    Francisco Torralbo
    Francisco Urbano
    [J]. Mathematische Zeitschrift, 2012, 271 : 257 - 270
  • [9] Conification of Kähler and Hyper-Kähler Manifolds
    D. V. Alekseevsky
    V. Cortés
    T. Mohaupt
    [J]. Communications in Mathematical Physics, 2013, 324 : 637 - 655
  • [10] On Certain Kähler Quotients of Quaternionic Kähler Manifolds
    V. Cortés
    J. Louis
    P. Smyth
    H. Triendl
    [J]. Communications in Mathematical Physics, 2013, 317 : 787 - 816