Adjoint Orbits of sl(2,ℝ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$sl(2,\mathbb {R})$\end{document} on Real Simple Lie Algebras and Controllability

被引:0
|
作者
Rachida El Assoudi-Baikari
机构
[1] INSA de Rouen,Laboratoire de Mathématiques
关键词
Simple Lie groups; Root systems; Invariant vector fields; Controllability; 93B05; 93C10; 17B22; 22E46;
D O I
10.1007/s10883-015-9277-4
中图分类号
学科分类号
摘要
This paper shows that for any Lie group G whose Lie algebra L is the split real form of a complex simple Lie algebra, and for any arbitrary root α, there exists a Cartan decomposition of L, related toα, which characterizes some controllability properties by using the adjoint orbits of sl(2,ℝ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\text {sl}(2, \mathbb {R})$\end{document}. For a class of invariant control systems evolving on G, it is proved that the necessary full rank condition for controllability is also sufficient.
引用
收藏
页码:169 / 189
页数:20
相关论文
共 50 条