Subconvexity for twisted L-functions over number fields via shifted convolution sums

被引:0
|
作者
P. Maga
机构
[1] Alfréd Rényi Institute of Mathematics,
[2] Hungarian Academy of Sciences,undefined
来源
Acta Mathematica Hungarica | 2017年 / 151卷
关键词
primary 11F41; 11M41; secondary 11F72; subconvexity; shifted convolution sum;
D O I
暂无
中图分类号
学科分类号
摘要
Assume that π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\pi}$$\end{document} is a cuspidal automorphic GL2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm GL}_{2}}$$\end{document} representation over a number field F. Then for any Hecke character χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\chi}$$\end{document} of conductor q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{q}}$$\end{document}, the subconvex bound L(1/2,π⊗χ)≪F,π,χ∞,εNq3/8+θ/4+ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L(1/2,\pi \otimes \chi) \ll_{F,\pi,\chi_{\infty},\varepsilon} \mathcal{N}{\mathfrak{q}}^{3/8+\theta/4+\varepsilon}$$\end{document}holds for any ε>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varepsilon > 0}$$\end{document}, where θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\theta}$$\end{document} is any constant towards the Ramanujan-Petersson conjecture (θ=7/64\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\theta = 7/64}$$\end{document} is admissible). In these notes, we derive this bound from the spectral decomposition of shifted convolution sums worked out by the author in [21].
引用
收藏
页码:232 / 257
页数:25
相关论文
共 50 条