Conditional MSE-based discrimination of the sample mean and the post-stratification estimator in population sampling

被引:0
|
作者
Gregor Dorfleitner
机构
[1] Universität Augsburg,Institut für Statistik und Mathematische Wirtschaftstheorie
来源
Statistical Papers | 1998年 / 39卷
关键词
Post-stratification; conditional inference; Vysochanskiî-Petunin inequality; superpopulation model;
D O I
暂无
中图分类号
学科分类号
摘要
Whenever a random sample is drawn from a stratified population, the post-stratification estimator\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tilde X$$ \end{document} usually is preferred to the sample mean\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tilde X$$ \end{document}, when the population mean is to be estimated. This is due to the fact that the variance of\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tilde X$$ \end{document} is asymptotically smaller than that of\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tilde X$$ \end{document}, while both estimators are asymptotically unbiased. However, this only holds looking at post-stratification unconditionally, when strata sample sizes are random. Conditioned on the realized sample sizes, the MSE of\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tilde X$$ \end{document} can be higher than that of\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tilde X$$ \end{document} which means that\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tilde X$$ \end{document} should be preferred to\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tilde X$$ \end{document}, even if it is biased. The conditional MSE difference of\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tilde X$$ \end{document} and\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tilde X$$ \end{document} is estimated, and using this estimation and its variance a heuristic test based on the Vysochanskiî-Petunin inequality is derived.
引用
收藏
页码:313 / 319
页数:6
相关论文
共 24 条
  • [1] Conditional MSE-based discrimination of the sample mean and the post-stratification estimator in population sampling
    Dorfleitner, G
    [J]. STATISTICAL PAPERS, 1998, 39 (03) : 313 - 319
  • [2] An improved mean estimator for judgment post-stratification
    Frey, Jesse
    Feeman, Timothy G.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (02) : 418 - 426
  • [3] A new ratio type estimator for computation of population mean under post-stratification
    Rather, K. Ul Islam
    Jeelani, M. Iqbal
    Shah, M. Younis
    Rizvi, S. E. H.
    Sharma, M.
    [J]. JOURNAL OF APPLIED MATHEMATICS STATISTICS AND INFORMATICS, 2022, 18 (01) : 29 - 42
  • [4] A more efficient mean estimator for judgement post-stratification
    Frey, Jesse
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (07) : 1404 - 1414
  • [5] Use of post-stratification in composite sampling for estimating mean
    P. Gavanji
    M. Salehi
    S. D. Gore
    H. Khademi
    S. Ayoubi
    M. Taghipour
    [J]. Environmental and Ecological Statistics, 2011, 18 : 535 - 542
  • [6] Use of post-stratification in composite sampling for estimating mean
    Gavanji, P.
    Salehi, M.
    Gore, S. D.
    Khademi, H.
    Ayoubi, S.
    Taghipour, M.
    [J]. ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2011, 18 (03) : 535 - 542
  • [7] Elevation-based post-stratification in Atlantic forest sampling
    Cielo-Filho, Roque
    Martins, Fernando Roberto
    [J]. PHYTOCOENOLOGIA, 2016, 46 (01) : 21 - 31
  • [8] A family of estimators of population mean using multi-auxiliary variate and post-stratification
    Vishwakarma, Gajendra K.
    Singh, Housila P.
    Singh, Sarjinder
    [J]. NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2010, 15 (02): : 233 - 253
  • [9] RATIO -CUM-PRODUCT ESTIMATOR OF FINITE POPULATION MEAN IN DOUBLE SAMPLING FOR STRATIFICATION
    Tailor, Rajesh
    Lone, Hilal A.
    [J]. JOURNAL OF RELIABILITY AND STATISTICAL STUDIES, 2014, 7 (01): : 93 - 101
  • [10] Improved Ratio- and Product-Type Exponential Estimators for Population Mean in Case of Post-Stratification
    Tailor, Rajesh
    Tailor, Ritesh
    Chouhan, Sunil
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (21) : 10387 - 10393