Asymptotics of Mean-Field O(N) Models

被引:0
|
作者
Kay Kirkpatrick
Tayyab Nawaz
机构
[1] University of Illinois at Urbana-Champaign,Department of Mathematics
来源
关键词
Mean-field; Rate function; Total spin; Limit theorem; Phase transition;
D O I
暂无
中图分类号
学科分类号
摘要
We study mean-field classical N-vector models, for integers N≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 2$$\end{document}. We use the theory of large deviations and Stein’s method to study the total spin and its typical behavior, specifically obtaining non-normal limit theorems at the critical temperatures and central limit theorems away from criticality. Important special cases of these models are the XY (N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=2$$\end{document}) model of superconductors, the Heisenberg (N=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=3$$\end{document}) model [previously studied in Kirkpatrick and Meckes (J Stat Phys 152:54–92, 2013) but with a correction to the critical distribution here], and the Toy (N=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=4$$\end{document}) model of the Higgs sector in particle physics.
引用
收藏
页码:1114 / 1140
页数:26
相关论文
共 50 条
  • [1] Asymptotics of Mean-Field O(N) Models
    Kirkpatrick, Kay
    Nawaz, Tayyab
    JOURNAL OF STATISTICAL PHYSICS, 2016, 165 (06) : 1114 - 1140
  • [2] Asymptotics of the Mean-Field Heisenberg Model
    Kay Kirkpatrick
    Elizabeth Meckes
    Journal of Statistical Physics, 2013, 152 : 54 - 92
  • [3] Asymptotics of the Mean-Field Heisenberg Model
    Kirkpatrick, Kay
    Meckes, Elizabeth
    JOURNAL OF STATISTICAL PHYSICS, 2013, 152 (01) : 54 - 92
  • [4] Quantum mean-field asymptotics and multiscale analysis
    Ammari, Zied
    Breteaux, Sebastien
    Nier, Francis
    TUNISIAN JOURNAL OF MATHEMATICS, 2019, 1 (02) : 221 - 272
  • [5] Spectral Gap in Mean-Field O(n)-Model
    Becker, Simon
    Menegaki, Angeliki
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 380 (03) : 1361 - 1400
  • [6] Asymptotics and Quantization for a Mean-Field Equation of Higher Order
    Martinazzi, Luca
    Petrache, Mircea
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2010, 35 (03) : 443 - 464
  • [7] Chains of mean-field models
    Hassani, S. Hamed
    Macris, Nicolas
    Urbanke, Ruediger
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2012,
  • [8] Free energy equivalence between mean-field models and nonsparsely diluted mean-field models
    Okuyama, Manaka
    Ohzeki, Masayuki
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2025, 58 (04)
  • [9] MEAN-FIELD (N,M)-CLUSTER APPROXIMATION FOR LATTICE MODELS
    BENAVRAHAM, D
    KOHLER, J
    PHYSICAL REVIEW A, 1992, 45 (12): : 8358 - 8370
  • [10] High Temperature Asymptotics of Orthogonal Mean-Field Spin Glasses
    Bhaswar B. Bhattacharya
    Subhabrata Sen
    Journal of Statistical Physics, 2016, 162 : 63 - 80