A prior knowledge guided deep learning method for building extraction from high-resolution remote sensing images

被引:0
|
作者
Ming Hao
Shilin Chen
Huijing Lin
Hua Zhang
Nanshan Zheng
机构
[1] China University of Mining and Technology,Jiangsu Key Laboratory of Resources and Environmental Information Engineering
[2] China University of Mining and Technology,School of Environment and Spatial Informatics
[3] Nanhu Campus of China University of Mining and Technology,undefined
来源
Urban Informatics | / 3卷 / 1期
关键词
Deep learning; Building extraction; Prior knowledge; Building feature attention module; Multi-task loss function;
D O I
10.1007/s44212-024-00038-8
中图分类号
学科分类号
摘要
There are problems such as poor interpretability and insufficient generalization ability when extracting buildings from high-resolution remote sensing images based on deep learning. This paper proposes a building extraction model called BPKG-SegFormer (Building Prior Knowledge Guided SegFormer) that combines prior knowledge of buildings with data-driven methods. This model constructs a building feature attention module and utilizes the multi-task loss function to optimize the extraction of buildings. Experimental results show that on the WHU building dataset, the proposed model outperforms UNet, Deeplabv3 + , and SegFormer models with OA, P, R, and MIoU of 96.63%, 95.94%, 94.76%, and 90.6%, respectively. The BPKG-SegFormer model extracts buildings with more regular shapes and flatter edges, reducing internal voids and increasing the number of correctly detected buildings.
引用
收藏
相关论文
共 50 条
  • [1] Deep Learning for Building Extraction from High-Resolution Remote Sensing Images
    Norelyaqine, Abderrahim
    Saadane, Abderrahim
    ADVANCED TECHNOLOGIES FOR HUMANITY, 2022, 110 : 116 - 128
  • [2] Building Extraction from High-Resolution Remote-Sensing Images Based on Deep Learning
    You, Haihui
    Li, Linhui
    Jing, Weipeng
    ELEKTROTEHNISKI VESTNIK, 2020, 87 (05): : 281 - 286
  • [3] Building extraction from high-resolution remote-sensing images based on deep learning
    You, Haihui
    Li, Linhui
    Jing, Weipeng
    Elektrotehniski Vestnik/Electrotechnical Review, 2020, 87 (05): : 281 - 286
  • [4] A Method for Extracting Photovoltaic Panels from High-Resolution Optical Remote Sensing Images Guided by Prior Knowledge
    Liu, Wenqing
    Huo, Hongtao
    Ji, Luyan
    Zhao, Yongchao
    Liu, Xiaowen
    Li, Jing
    REMOTE SENSING, 2024, 16 (01)
  • [5] A high-resolution remote sensing image building extraction method based on deep learning
    Fan R.
    Chen Y.
    Xu Q.
    Wang J.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2019, 48 (01): : 34 - 41
  • [6] Boundary-guided DCNN for building extraction from high-resolution remote sensing images
    Yang, Sihan
    He, Qiang
    Lim, Jae Hak
    Jeon, Gwanggil
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2024, 132 (9-10): : 5171 - 5171
  • [7] Multitask Learning-based Building Extraction from High-Resolution Remote Sensing Images
    Zhu P.
    Li S.
    Zhang L.
    Li Y.
    Journal of Geo-Information Science, 2021, 23 (03) : 514 - 523
  • [8] Extraction of Aquaculture Cages from High-Resolution Remote Sensing Images Based on Deep Learning
    Yuan, Ying
    Li, Fei
    Zhou, Dan
    Bai, Lu
    Jurek-Loughrey, Anna
    Wang, Zhibao
    2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2024), 2024, : 9556 - 9560
  • [9] Ship Lock Extraction from High-Resolution Remote Sensing Images Based on Fuzzy Theory and Prior Knowledge
    Chen, Bingsun
    Bao, Yi
    Song, Yanjiao
    Li, Ziyang
    Wang, Zhe
    Wang, Xi
    Ma, Runsheng
    Meng, Lingkui
    Zhang, Wen
    Li, Linyi
    REMOTE SENSING, 2024, 16 (17)
  • [10] Oil Tank Extraction in High-resolution Remote Sensing Images based on Deep Learning
    Xia, Xian
    HongLiang
    Yang RongFeng
    Kun, Yang
    2018 26TH INTERNATIONAL CONFERENCE ON GEOINFORMATICS (GEOINFORMATICS 2018), 2018,