Seasonal dynamics in an SIR epidemic system

被引:0
|
作者
E. Augeraud-Véron
N. Sari
机构
[1] Université de La Rochelle,Laboratoire de Mathématiques, Image et Applications (MIA)
来源
关键词
Periodic SIR epidemic model; Slow-fast system; Canard solution; Averaging; Periodic motion; 92D30; 34C15; 34C25; 34E15; 34E17;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a seasonally forced SIR epidemic model where periodicity occurs in the contact rate. This periodical forcing represents successions of school terms and holidays. The epidemic dynamics are described by a switched system. Numerical studies in such a model have shown the existence of periodic solutions. First, we analytically prove the existence of an invariant domain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D$$\end{document} containing all periodic (harmonic and subharmonic) orbits. Then, using different scales in time and variables, we rewrite the SIR model as a slow-fast dynamical system and we establish the existence of a macroscopic attractor domain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document}, included in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D$$\end{document}, for the switched dynamics. The existence of a unique harmonic solution is also proved for any value of the magnitude of the seasonal forcing term which can be interpreted as an annual infection. Subharmonic solutions can be seen as epidemic outbreaks. Our theoretical results allow us to exhibit quantitative characteristics about epidemics, such as the maximal period between major outbreaks and maximal prevalence.
引用
收藏
页码:701 / 725
页数:24
相关论文
共 50 条
  • [1] Seasonal dynamics in an SIR epidemic system
    Augeraud-Veron, E.
    Sari, N.
    JOURNAL OF MATHEMATICAL BIOLOGY, 2014, 68 (03) : 701 - 725
  • [2] Global dynamics of a controlled discontinuous diffusive SIR epidemic system
    Li, Wenjie
    Ji, Jinchen
    Huang, Lihong
    Guo, Zhenyuan
    APPLIED MATHEMATICS LETTERS, 2021, 121
  • [3] A SIR epidemic model for citation dynamics
    Sandro M. Reia
    José F. Fontanari
    The European Physical Journal Plus, 136
  • [4] A SIR epidemic model for citation dynamics
    Reia, Sandro M.
    Fontanari, Jose F.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (02):
  • [5] Rich dynamics of an SIR epidemic model
    Pathak, S.
    Maiti, A.
    Samanta, G. P.
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2010, 15 (01): : 71 - 81
  • [6] Dynamics Analysis of a Stochastic SIR Epidemic Model
    Rao, Feng
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [7] On the Integrability of the SIR Epidemic Model with Vital Dynamics
    Chen, Ding
    ADVANCES IN MATHEMATICAL PHYSICS, 2020, 2020
  • [8] Chaos control for a class of SIR epidemic model with seasonal fluctuation
    Zhang Yi
    Jie Yueming
    Liu Wanquan
    2013 32ND CHINESE CONTROL CONFERENCE (CCC), 2013, : 856 - 859
  • [9] Asymptotic Dynamics of a Stochastic SIR Epidemic System Affected by Mixed Nonlinear Incidence Rates
    Han, Ping
    Chang, Zhengbo
    Meng, Xinzhu
    COMPLEXITY, 2020, 2020
  • [10] Chaotic dynamics in the seasonally forced SIR epidemic model
    Pablo G. Barrientos
    J. Ángel Rodríguez
    Alfonso Ruiz-Herrera
    Journal of Mathematical Biology, 2017, 75 : 1655 - 1668