A Sharp Condition for Scattering of the Radial 3D Cubic Nonlinear Schrödinger Equation

被引:1
|
作者
Justin Holmer
Svetlana Roudenko
机构
[1] University of California,Department of Mathematics
[2] Arizona State University,Department of Mathematics and Statistics
来源
关键词
Soliton; Global Existence; Soliton Solution; Strichartz Estimate; Global Wellposedness;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the problem of identifying sharp criteria under which radial H1 (finite energy) solutions to the focusing 3d cubic nonlinear Schrödinger equation (NLS) i∂tu + Δu + |u|2u = 0 scatter, i.e., approach the solution to a linear Schrödinger equation as t → ±∞. The criteria is expressed in terms of the scale-invariant quantities \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\|u_0\|_{L^2}\|\nabla u_0\|_{L^2}}$$\end{document} and M[u]E[u], where u0 denotes the initial data, and M[u] and E[u] denote the (conserved in time) mass and energy of the corresponding solution u(t). The focusing NLS possesses a soliton solution eitQ(x), where Q is the ground-state solution to a nonlinear elliptic equation, and we prove that if M[u]E[u] < M[Q]E[Q] and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\|u_0\|_{L^2}\|\nabla u_0\|_{L^2} < \|Q\|_{L^2}\|\nabla Q\|_{L^2}}$$\end{document}, then the solution u(t) is globally well-posed and scatters. This condition is sharp in the sense that the soliton solution eitQ(x), for which equality in these conditions is obtained, is global but does not scatter. We further show that if M[u]E[u] < M[Q]E[Q] and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\|u_0\|_{L^2}\|\nabla u_0\|_{L^2} > \|Q\|_{L^2}\|\nabla Q\|_{L^2}}$$\end{document}, then the solution blows-up in finite time. The technique employed is parallel to that employed by Kenig-Merle [17] in their study of the energy-critical NLS.
引用
收藏
页码:435 / 467
页数:32
相关论文
共 50 条