High-energy multidimensional solitary states in hollow-core fibres

被引:0
|
作者
Reza Safaei
Guangyu Fan
Ojoon Kwon
Katherine Légaré
Philippe Lassonde
Bruno E. Schmidt
Heide Ibrahim
François Légaré
机构
[1] Institut National de la Recherche Scientifique,
[2] Centre Énergie Matériaux et Télécommunications,undefined
[3] Few-cycle Inc.,undefined
来源
Nature Photonics | 2020年 / 14卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Multidimensional solitary states (MDSS)—self-sustained wavepackets—have attracted renewed interest in many different fields of physics. They are of particular importance in nonlinear optics, especially for the nonlinear propagation of ultrashort pulses in multimode fibres, which contain rich spatiotemporal intermodal interactions and dynamics, albeit often in an unstable manner. Here, we report the observation of the formation of highly stable multidimensional solitary states in a molecular gas-filled large-core hollow-core fibre. We experimentally and numerically demonstrate the creation of MDSS by multimillijoule, subpicosecond near-infrared pulses and the underlying physics. We find that the MDSS have a broadband redshifted spectra with an uncommon negative quadratic spectral phase at the output of the hollow-core fibre, originating from Raman enhancement due to the strong intermodal nonlinear interactions. The spatial and temporal localization of MDSS enables the compression of the broadened pulses at the output to 10.8 fs by simple linear propagation in a piece of fused silica. The high spatiotemporal quality of MDSS is further verified by high-harmonic generation. Our results present new opportunities for studying multimodal spatiotemporal dynamics in the high-energy regime. This work also presents a route toward a new class of compact, tunable and high-energy spatiotemporally engineered coherent light sources based on picosecond ytterbium technology.
引用
收藏
页码:733 / 739
页数:6
相关论文
共 50 条
  • [1] High-energy multidimensional solitary states in hollow-core fibres
    Safaei, Reza
    Fan, Guangyu
    Kwon, Ojoon
    Legare, Katherine
    Lassonde, Philippe
    Schmidt, Bruno E.
    Ibrahim, Heide
    Legare, Francois
    NATURE PHOTONICS, 2020, 14 (12) : 733 - +
  • [2] High-energy multidimensional solitary states in hollow-core fibres
    Fan, G.
    Safaei, R.
    Kwon, O.
    Legare, K.
    Lassonde, P.
    Schmidt, B. E.
    Ibrahim, H.
    Legare, F.
    2021 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2021,
  • [3] High-energy multidimensional solitary states in hollow-core fibers
    Safaei, Reza
    Fan, Guangyu
    Kwon, Ojoon
    Legare, Katherine
    Lassonde, Philippe
    Ibrahim, Heide
    Legare, Francois
    2021 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2021,
  • [4] Light-field synthesizer based on multidimensional solitary states in hollow-core fibers
    Truong, Tran-chau
    Beetar, John E.
    Chini, Michael
    OPTICS LETTERS, 2023, 48 (09) : 2397 - 2400
  • [5] Optical solitons in hollow-core fibres
    Travers, John C.
    OPTICS COMMUNICATIONS, 2024, 555
  • [6] Ultrafast phenomena in hollow-core fibres
    Piccoli, R.
    Jeong, Y.
    Rovere, A.
    Zanotto, L.
    Jia, Y.
    Legare, F.
    Morandotti, R.
    Schmidt, B. E.
    Razzari, L.
    2020 PHOTONICS NORTH (PN), 2020,
  • [7] Few-cycle Yb laser source at 20 kHz using multidimensional solitary states in hollow-core fibers
    Arias, L.
    Longa, A.
    Jargot, G.
    Pomerleau, A.
    Lassonde, P.
    Fan, G.
    Safaei, R.
    Corkum, P. B.
    Boschini, F.
    Ibrahim, H.
    Legare, F.
    OPTICS LETTERS, 2022, 47 (14) : 3612 - 3615
  • [8] Exotic waves in multimode hollow-core fibres
    Logan G. Wright
    Frank W. Wise
    Nature Photonics, 2020, 14 : 713 - 714
  • [9] Hollow-core and photonic bandgap optical fibres
    Argyros, Alexander
    2009 LASERS & ELECTRO-OPTICS & THE PACIFIC RIM CONFERENCE ON LASERS AND ELECTRO-OPTICS, VOLS 1 AND 2, 2009, : 190 - 191
  • [10] Exotic waves in multimode hollow-core fibres
    Wright, Logan G.
    Wise, Frank W.
    NATURE PHOTONICS, 2020, 14 (12) : 713 - 714