On algebras generated by positive operators

被引:0
|
作者
Roman Drnovšek
机构
[1] University of Ljubljana,Department of Mathematics, Faculty of Mathematics and Physics
来源
Positivity | 2018年 / 22卷
关键词
Positive matrices; Positive idempotents; Vector lattices; Commutativity; Triangularizability; 15A27; 46A40;
D O I
暂无
中图分类号
学科分类号
摘要
We study algebras generated by positive matrices, i.e., matrices with nonnegative entries. Some of our results hold in more general setting of vector lattices. We reprove and extend some theorems that have been recently shown by Kandić and Šivic. In particular, we give a more transparent proof of their result that the unital algebra generated by positive idempotent matrices E and F such that EF≥FE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E F \ge F E$$\end{document} is equal to the linear span of the set {I,E,F,EF,FE,EFE,FEF,(EF)2,(FE)2}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{I, E, F, E F, F E, E F E, F E F, (E F)^2, (F E)^2\}$$\end{document}, and so its dimension is at most 9. We give examples of two positive idempotent matrices that generate unital algebra of dimension 2n if n is even, and of dimension (2n-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2n - 1)$$\end{document} if n is odd. We also prove that the algebra generated by positive matrices B1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_1$$\end{document}, B2,…,Bk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_2, \ldots , B_k$$\end{document} is triangularizable if ABi≥BiA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A B_i \ge B_i A$$\end{document} (i=1,2,…,k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i=1,2, \ldots , k$$\end{document}) for some positive matrix A with distinct eigenvalues.
引用
收藏
页码:815 / 828
页数:13
相关论文
共 50 条