Univalence of Integral Operators on Neighborhoods of Analytic Functions

被引:0
|
作者
Ali Ebadian
Rahim Kargar
机构
[1] Payame Noor University,Department of Mathematics
关键词
Univalent; Starlike and convex functions; Neighborhoods; Integral operators; Pre-Schwarzian derivative; Linear invariant families; 30C45;
D O I
暂无
中图分类号
学科分类号
摘要
Assume that Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document} is the unit disk in the complex plane and A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}$$\end{document} is the class of analytic functions f in Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document} with normalization conditions f(0)=f′(0)-1=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(0)=f^{\prime }(0)-1=0$$\end{document}. For λi,μi∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{i},\mu _{i}\in \mathbb {C}$$\end{document} and fi∈A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{i}\in \mathcal {A}$$\end{document}(1≤i≤n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1\le i\le n)$$\end{document}, consider the integral operator: F(z):=Fλ,μ[(f1,…,fn)](z)=∫0z∏i=1n(fi′(t))λifi(t)tμidt(z∈Δ),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} F(z):=F_{\lambda ,\mu }[(f_{1},\ldots ,f_{n})](z)=\int _{0}^{z}\prod _{i=1}^{n}(f_{i}^{\prime }(t))^{\lambda _{i}} \left( \dfrac{f_{i}(t)}{t}\right) ^{\mu _{i}}\mathrm{d}t \qquad (z\in \Delta ), \end{aligned}$$\end{document}where λ=(λ1,…,λn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda =(\lambda _{1},\ldots ,\lambda _{n})$$\end{document} and μ=(μ1,…,μn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu =(\mu _{1},\ldots ,\mu _{n})$$\end{document}. For δ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta >0$$\end{document}, define Vδ(f):=g∈An:||f′-g′||∞≤δ,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} V_{\delta }(f):=\left\{ g\in \mathcal {A}^{n}:||f^{\prime }-g^{\prime }||_{\infty }\le \delta \right\} , \end{aligned}$$\end{document}where ||f′-g′||∞:=maxz∈Δ,1≤i≤n|fi′(z)-gi′(z)|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$||f^{\prime }-g^{\prime }||_{\infty }:=\max _{z\in \Delta ,~1\le i\le n}|f_{i}^{\prime }(z)-g_{i}^{\prime }(z)|$$\end{document}, a neighborhood of f, f=(f1,…,fn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f=(f_{1},\ldots ,f_{n})$$\end{document}, g=(g1,…,gn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g=(g_{1},\ldots ,g_{n})$$\end{document}, f∈An\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in \mathcal {A}^{n}$$\end{document}, An=A×⋯×A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}^{n}=\mathcal {A}\times \cdots \times \mathcal {A}$$\end{document} and ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} is the Cartesian product. In this paper, we determine the radii of Vδ(f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{\delta }(f)$$\end{document}, such that the integral operator F(z) carries the neighborhood into the class S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}$$\end{document} (class of univalent functions), where fi(1≤i≤n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{i}~(1\le i\le n)$$\end{document} belongs to the universal linear invariant families or satisfies certain conditions.
引用
收藏
页码:911 / 915
页数:4
相关论文
共 50 条
  • [1] Univalence of Integral Operators on Neighborhoods of Analytic Functions
    Ebadian, Ali
    Kargar, Rahim
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2018, 42 (A2): : 911 - 915
  • [2] Univalence of integral operators involving Bessel functions
    Baricz, Arpad
    Frasin, Basem A.
    [J]. APPLIED MATHEMATICS LETTERS, 2010, 23 (04) : 371 - 376
  • [3] THE UNIVALENCE OF SOME INTEGRAL OPERATORS USING THE BESSEL FUNCTIONS
    Ularu, Nicoleta
    [J]. MATEMATICKI VESNIK, 2013, 65 (04): : 547 - 554
  • [4] ON UNIVALENCE OF INTEGRAL OPERATORS
    Sagsoz, Fatma
    [J]. COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2018, 67 (02): : 139 - 146
  • [5] Univalence of certain integral operators involving generalized Struve functions
    Din, Muhey U.
    Srivastava, Hari Mohan
    Raza, Mohsan
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2018, 47 (04): : 821 - 833
  • [6] Certain Integral Operators of Analytic Functions
    Lupas, Alina Alb
    Andrei, Loriana
    [J]. MATHEMATICS, 2021, 9 (20)
  • [7] Integral Operators Preserving Univalence
    Al-Refai, Oqlah
    [J]. MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2014, 8 : 163 - 172
  • [8] Univalence and starlikeness of nonlinear integral transform of certain class of analytic functions
    Obradovic, M.
    Ponnusamy, S.
    Vasundhra, P.
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2009, 119 (05): : 593 - 610
  • [9] On univalence of two integral operators
    Pescar, Virgil
    Breaz, Nicoleta
    [J]. APPLIED MATHEMATICS LETTERS, 2010, 23 (12) : 1407 - 1411
  • [10] On univalence of certain integral operators
    Pescar, V
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2000, 31 (08): : 975 - 978