Composition series in groups and the structure of slim semimodular lattices

被引:0
|
作者
Gábor Czédli
E. Tamás Schmidt
机构
[1] University of Szeged,
[2] Bolyai Institute,undefined
[3] Mathematical Institute of the Budapest University of Technology and Economics,undefined
来源
Acta Scientiarum Mathematicarum | 2013年 / 79卷 / 3-4期
关键词
composition series; Jordan-Hölder Theorem; group; slim lattice; semimodularity; planar lattice; permutation; 06C10; 20E15;
D O I
10.1007/BF03651325
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overrightarrow{H}$$\end{document}and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overrightarrow{K}$$\end{document} be finite composition series of a group G. The intersections Hi ∩ Kj of their members form a lattice CSL(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overrightarrow{H}$$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overrightarrow{K}$$\end{document}) under set inclusion. Improving the Jordan-Hölder theorem, G. Grätzer, J. B. Nation and the present authors have recently shown that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overrightarrow{H}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overrightarrow{K}$$\end{document} determine a unique permutation π such that, for all i, the i-th factor of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overrightarrow{H}$$\end{document}is “down-and-up projective”to the π(i)-th factor of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overrightarrow{K}$$\end{document}. Equivalent definitions of π were earlier given by R. P. Stanley and H. Abels. We prove that π determines the lattice CSL(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overrightarrow{H}$$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overrightarrow{K}$$\end{document}). More generally, we describe slim semimodular lattices, up to isomorphism, by permutations, up to an equivalence relation called “sectionally inverted or equal”. As a consequence, we prove that the abstract class of all CSL(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overrightarrow{H}$$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overrightarrow{K}$$\end{document}) coincides with the class of duals of all slim semimodular lattices.
引用
收藏
页码:369 / 390
页数:21
相关论文
共 50 条
  • [1] Composition series in groups and the structure of slim semimodular lattices
    Czedli, Gabor
    Schmidt, E. Tamas
    ACTA SCIENTIARUM MATHEMATICARUM, 2013, 79 (3-4): : 369 - 390
  • [2] ON THE NUMBER OF SLIM, SEMIMODULAR LATTICES
    Czedli, Gabor
    Dekany, Tamas
    Ozsvart, Laszlo
    Szakacs, Nora
    Udvari, Balazs
    MATHEMATICA SLOVACA, 2016, 66 (01) : 5 - 18
  • [3] A note on congruence lattices of slim semimodular lattices
    Czedli, Gabor
    ALGEBRA UNIVERSALIS, 2014, 72 (03) : 225 - 230
  • [4] A note on congruence lattices of slim semimodular lattices
    Gábor Czédli
    Algebra universalis, 2014, 72 : 225 - 230
  • [5] Quasiplanar Diagrams and Slim Semimodular Lattices
    Czedli, Gabor
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2016, 33 (02): : 239 - 262
  • [6] Quasiplanar Diagrams and Slim Semimodular Lattices
    Gábor Czédli
    Order, 2016, 33 : 239 - 262
  • [7] Lamps in slim rectangular planar semimodular lattices
    Gábor Czédli
    Acta Scientiarum Mathematicarum, 2021, 87 : 381 - 413
  • [8] A new property of congruence lattices of slim, planar, semimodular lattices
    Czedli, Gabor
    Gratzer, George
    CATEGORIES AND GENERAL ALGEBRAIC STRUCTURES WITH APPLICATIONS, 2022, 16 (01) : 1 - 28
  • [9] Lamps in slim rectangular planar semimodular lattices
    Czedli, Gabor
    ACTA SCIENTIARUM MATHEMATICARUM, 2021, 87 (3-4): : 381 - 413
  • [10] Absolute Retracts for Finite Distributive Lattices and Slim Semimodular Lattices
    Gábor Czédli
    Ali Molkhasi
    Order, 2023, 40 : 127 - 148