HandSense: smart multimodal hand gesture recognition based on deep neural networks

被引:11
|
作者
Zhang Z. [1 ]
Tian Z. [1 ]
Zhou M. [1 ]
机构
[1] Chongqing University of Posts and Telecommunications, Chongqing
基金
中国国家自然科学基金;
关键词
Fine-grained gestures; Hand gesture recognition; HandSense; Spatial–temporal features;
D O I
10.1007/s12652-018-0989-7
中图分类号
学科分类号
摘要
Hand gesture recognition (HGR) is a promising enabler for human–computer interaction (HCI). Hand gestures are normally classified into multi-modal actions, including static gestures, fine-grained dynamic gestures, and coarse-grained dynamic gestures. Among them, the fine-grained action detection is limited under the small-scale image region condition. To solve this problem, we propose the HandSense, a new system for the multi-modal HGR based on a combined RGB and depth cameras to improve the fine-grained action descriptors as well as preserve the ability to perform general action recognition. First of all, two interconnected 3D convolutional neural network (3D-CNN) are employed to extract the spatial–temporal features from the RGB and depth images. Second, these spatial–temporal features are integrated into a fusion feature. Finally, the Support Vector Machine (SVM) is used to recognize different gestures based on the fusion feature. To validate the effectiveness of the HandSense, the extensive experiments are conducted on the public gesture dataset, namely the SKIG hand gesture dataset. In addition, the feasibility of the proposed system is also demonstrated by using a challenging multi-modal RGB-Depth hand gesture dataset. © Springer-Verlag GmbH Germany, part of Springer Nature 2018.
引用
收藏
页码:1557 / 1572
页数:15
相关论文
共 50 条
  • [1] Deep Dynamic Neural Networks for Multimodal Gesture Segmentation and Recognition
    Wu, Di
    Pigou, Lionel
    Kindermans, Pieter-Jan
    Nam Do-Hoang Le
    Shao, Ling
    Dambre, Joni
    Odobez, Jean-Marc
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (08) : 1583 - 1597
  • [2] Hand Gesture Recognition with Convolutional Neural Networks for the Multimodal UAV Control
    Ma, Yuntao
    Liu, Yuxuan
    Fin, Ruiyang
    Yuan, Xingyang
    Sekha, Raza
    Wilson, Samuel
    Vaidyanathan, Ravi
    2017 WORKSHOP ON RESEARCH, EDUCATION AND DEVELOPMENT OF UNMANNED AERIAL SYSTEMS (RED-UAS), 2017, : 198 - 203
  • [3] Semantic Segmentation based Hand Gesture Recognition using Deep Neural Networks
    Dutta, H. Pallab Jyoti
    Sarma, Debajit
    Bhuyan, M. K.
    Laskar, R. H.
    2020 TWENTY SIXTH NATIONAL CONFERENCE ON COMMUNICATIONS (NCC 2020), 2020,
  • [4] Hand Gesture Recognition Using Deep Convolutional Neural Networks
    Strezoski, Gjorgji
    Stojanovski, Dario
    Dimitrovski, Ivica
    Madjarov, Gjorgji
    ICT INNOVATIONS 2016: COGNITIVE FUNCTIONS AND NEXT GENERATION ICT SYSTEMS, 2018, 665 : 49 - 58
  • [5] Hand gesture recognition based on convolutional neural networks
    Hu, Yu-lu
    Wang, Lian-ming
    LIDAR IMAGING DETECTION AND TARGET RECOGNITION 2017, 2017, 10605
  • [6] Deep Neural Networks vs Bag of Features for Hand Gesture Recognition
    Mirsu, Radu
    Simion, Georgiana
    Caleanu, Catlin Daniel
    Ursulescu, Oana
    Calimanu, Ioana Pop
    2019 42ND INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2019, : 369 - 372
  • [7] Static Hand Gesture Recognition Based on Convolutional Neural Networks
    Pinto, Raimundo F., Jr.
    Borges, Carlos D. B.
    Almeida, Antonio M. A.
    Paula, Alis C., Jr.
    JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, 2019, 2019
  • [8] Hybrid Deep Neural Networks for Sparse Surface EMG-Based Hand Gesture Recognition
    Rahimian, Elahe
    Zabihi, Soheil
    Asif, Amir
    Mohammadi, Arash
    2020 54TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2020, : 371 - 374
  • [9] Hand Gesture Recognition with Convolution Neural Networks
    Zhan, Felix
    2019 IEEE 20TH INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION FOR DATA SCIENCE (IRI 2019), 2019, : 295 - 298
  • [10] Hand Gesture Recognition using Neural Networks
    Murthy, G. R. S.
    Jadon, R. S.
    2010 IEEE 2ND INTERNATIONAL ADVANCE COMPUTING CONFERENCE, 2010, : 134 - 138