In this paper, we consider A\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal A}$$\end{document}-Fredholm and semi-A\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal A}$$\end{document}-Fredholm operators on Hilbert C*-modules over a W*-algebra A\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal A}$$\end{document} defined in [3] and [9]. Using the assumption that A\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal A}$$\end{document} is a W*-algebra (rather than an arbitrary C*-algebra), we obtain a generalization of Schechter—Lebow characterization of semi-Fredholm operators and a generalization of the “punctured neighborhood” theorem, as well as some other results generalizing their classical counterparts. We consider both adjointable and nonadjointable semi-Fredholm operators over W*-algebras. Moreover, we also work with general bounded adjointable operators with closed ranges over C*-algebras and prove a generalization of a Bouldin result for Hilbert spaces to Hilbert C*-modules.
机构:
Serbian Acad Arts & Sci, Math Inst, 367,Kneza Mihaila 36, Belgrade 11000, SerbiaSerbian Acad Arts & Sci, Math Inst, 367,Kneza Mihaila 36, Belgrade 11000, Serbia