Global surfaces of section in non-regular convex energy levels of Hamiltonian systems

被引:0
|
作者
C. Grotta-Ragazzo
Pedro A. S. Salomão
机构
[1] Universidade de São Paulo,Instituto de Matemática e Estatística
来源
Mathematische Zeitschrift | 2007年 / 255卷
关键词
Hamiltonian systems; Global surface of section; Convexity; Saddle-center; Two-degrees of freedom;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we prove the existence of global sections of disk-type in non-regular and strictly convex energy levels of integrable and near-integrable Hamiltonian systems with two degrees of freedom. This extends a result of (Hofer et al. in Ann. Math.(2) 148(1):197–289, 1998) where the same statement is true provided the energy level is regular.
引用
收藏
页码:323 / 334
页数:11
相关论文
共 50 条
  • [1] Global surfaces of section in non-regular convex energy levels of Hamiltonian systems
    Grotta-Ragazzo, C.
    Salomao, Pedro A. S.
    MATHEMATISCHE ZEITSCHRIFT, 2007, 255 (02) : 323 - 334
  • [2] Convex energy levels of Hamiltonian systems
    Salomão P.A.S.
    Qualitative Theory of Dynamical Systems, 2004, 4 (2) : 439 - 454
  • [3] NON-REGULAR SURFACES OF BOUNDED EXTERNAL CURVATURE
    BAKELMAN, IJ
    DOKLADY AKADEMII NAUK SSSR, 1958, 119 (04): : 631 - 632
  • [4] On non-regular linearization of nonlinear systems
    Zhong, Jianghua
    Chen, Daizhan
    Hu, Xiaoming
    Proceedings of the 24th Chinese Control Conference, Vols 1 and 2, 2005, : 62 - 67
  • [5] ON ANOSOV ENERGY-LEVELS OF CONVEX HAMILTONIAN-SYSTEMS
    PATERNAIN, GP
    PATERNAIN, M
    MATHEMATISCHE ZEITSCHRIFT, 1994, 217 (03) : 367 - 376
  • [6] Plasmon resonances in nanowires with a non-regular cross-section
    Martin, OJF
    OPTICAL NANOTECHNOLOGIES: THE MANIPULATION OF SURFACE AND LOCAL PLASMONS, 2003, 88 : 183 - 209
  • [7] CONVEX HAMILTONIAN ENERGY SURFACES AND THEIR PERIODIC TRAJECTORIES
    EKELAND, I
    HOFER, H
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 113 (03) : 419 - 469
  • [8] THE FIRST THREE ORDER MELNIKOV FUNCTIONS FOR GENERAL PIECEWISE HAMILTONIAN SYSTEMS WITH A NON-REGULAR SEPARATION LINE
    Yang, Peixing
    Yu, Jiang
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (03): : 1374 - 1394
  • [9] CLOSED TRAJECTORIES ON SYMMETRIC CONVEX HAMILTONIAN ENERGY SURFACES
    Wang, Wei
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2012, 32 (02) : 679 - 701
  • [10] New results on non-regular linearization of non-linear systems
    Zhong, J.
    Karasalo, M.
    Cheng, D.
    Hu, X.
    INTERNATIONAL JOURNAL OF CONTROL, 2007, 80 (10) : 1651 - 1664