Hypohamiltonian Oriented Graphs of All Possible Orders

被引:0
|
作者
Susan A. van Aardt
Alewyn P. Burger
Marietjie Frick
Arnfried Kemnitz
Ingo Schiermeyer
机构
[1] University of South Africa,Department of Mathematical Sciences
[2] University of Stellenbosch,Department of Logistics
[3] Technical University of Braunschweig,Computational Mathematics
[4] Techn. Univ. Bergakademie Freiberg,Institut für Diskrete Mathematik und Algebra
来源
Graphs and Combinatorics | 2015年 / 31卷
关键词
Hypohamiltonian; Digraphs; Oriented graphs;
D O I
暂无
中图分类号
学科分类号
摘要
A digraph is hamiltonian if it has a cycle that visits every vertex. If a digraph D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D$$\end{document} is nonhamiltonian and D-v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D-v$$\end{document} is hamiltonian for every v∈V(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in V(D)$$\end{document}, then D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D$$\end{document} is said to be hypohamiltonian. It is known that there exist hypohamiltonian digraphs of order n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} for every n≥6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 6$$\end{document}. Several infinite families of hypohamiltonian oriented graphs have appeared in the literature, but there are infinitely many orders which are not covered by those constructions. In this paper we construct a hypohamiltonian oriented graph of order n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} for every n≥9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 9$$\end{document}.
引用
收藏
页码:1821 / 1831
页数:10
相关论文
共 50 条
  • [1] Hypohamiltonian Oriented Graphs of All Possible Orders
    van Aardt, Susan A.
    Burger, Alewyn P.
    Frick, Marietjie
    Kemnitz, Arnfried
    Schiermeyer, Ingo
    GRAPHS AND COMBINATORICS, 2015, 31 (06) : 1821 - 1831
  • [2] Planar hypohamiltonian oriented graphs
    Burger, Alewyn P.
    de Wet, Johan P.
    Frick, Marietjie
    Van Cleemput, Nico
    Zamfirescu, Carol T.
    JOURNAL OF GRAPH THEORY, 2022, 100 (01) : 50 - 68
  • [3] An Infinite Family of Planar Hypohamiltonian Oriented Graphs
    van Aardt, Susan A.
    Burger, Alewyn P.
    Frick, Marietjie
    GRAPHS AND COMBINATORICS, 2013, 29 (04) : 729 - 733
  • [4] An Infinite Family of Planar Hypohamiltonian Oriented Graphs
    Susan A. van Aardt
    Alewyn P. Burger
    Marietjie Frick
    Graphs and Combinatorics, 2013, 29 : 729 - 733
  • [5] On Hypohamiltonian and Almost Hypohamiltonian Graphs
    Zamfirescu, Carol T.
    JOURNAL OF GRAPH THEORY, 2015, 79 (01) : 63 - 81
  • [6] On Planar Hypohamiltonian Graphs
    Wiener, Gabor
    Araya, Makoto
    JOURNAL OF GRAPH THEORY, 2011, 67 (01) : 55 - 68
  • [7] Seven Problems on Hypohamiltonian and Almost Hypohamiltonian Graphs
    Zamfirescu, Carol T.
    CONVEXITY AND DISCRETE GEOMETRY INCLUDING GRAPH THEORY, 2016, 148 : 253 - 255
  • [8] Some properties of hypohamiltonian graphs
    Katerinis P.
    aequationes mathematicae, 2006, 72 (1-2) : 139 - 151
  • [9] On almost hypohamiltonian graphs
    Goedgebeur, Jan
    Zamfirescu, Carol T.
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2019, 21 (04):
  • [10] Hypohamiltonian graphs and their crossing number
    Zamfirescu, Carol T.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (04):