Solvability of convolution type integro-differential equations on ℝ

被引:0
|
作者
Khachatur A. Khachatryan
Emilya A. Khachatryan
机构
[1] National Academy of Sciences of Armenia,Institute of Mathematics
[2] Yerevan State University,Faculty of Applied Mathematics and Informatics
关键词
Factorization of operator; Volterra operators; resolvent; characteristic equation; 45J05; 45E05; 45G05; 45E10;
D O I
10.3103/S1068362307030065
中图分类号
学科分类号
摘要
The paper looks for the solutions of integro-differential equations of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ - \frac{{d\varphi }}{{dx}} + A\varphi (x) = g(x) + B\int_\mathbb{R} {k(x - t)\lambda (t)\varphi (t)dt, x \in \mathbb{R}} $$ \end{document} in the class of functions which are absolutely continuous and of slow growth on ℝ. It is assumed that A and B are nonnegative parameters, 0 ≤ g ∈ L1 (ℝ), 0 ≤ k ∈ L1 (ℝ), ∫ℝk(x) dx = 1 and 0 ≤ λ(x) ≤ 1 is a measurable function in ℝ. The equation is solved by a special factorization of the corresponding integro-differential operator in combination with appropriately modified standard methods of the theory of convolution type integral equations.
引用
收藏
页码:161 / 175
页数:14
相关论文
共 50 条
  • [1] Solvability of Vector Integro-Differential Equations of Convolution Type on the Semiaxis
    Khachatryan, Kh. A.
    [J]. JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2008, 43 (05): : 305 - 316
  • [2] Solvability of vector integro-differential equations of convolution type on the semiaxis
    Kh. A. Khachatryan
    [J]. Journal of Contemporary Mathematical Analysis, 2008, 43 : 305 - 316
  • [3] On Solvability of Integro-Differential Equations
    De Leon-Contreras, Marta
    Gyongy, Istvan
    Wu, Sizhou
    [J]. POTENTIAL ANALYSIS, 2021, 55 (03) : 443 - 475
  • [4] On Solvability of Integro-Differential Equations
    Marta De León-Contreras
    István Gyöngy
    Sizhou Wu
    [J]. Potential Analysis, 2021, 55 : 443 - 475
  • [5] Factorization of Convolution Type Vector Integro-Differential Equations
    Khachatryan, Kh. A.
    Kostanyan, M. G.
    [J]. JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2008, 43 (03): : 145 - 156
  • [6] Factorization of convolution type vector integro-differential equations
    Kh. A. Khachatryan
    M. G. Kostanyan
    [J]. Journal of Contemporary Mathematical Analysis, 2008, 43 : 145 - 156
  • [7] A System of Integro-Differential Equations of Convolution Type with Power Nonlinearity
    Askhabov S.N.
    [J]. Journal of Applied and Industrial Mathematics, 2021, 15 (3) : 365 - 375
  • [8] A System of Integro-Differential Equations of Convolution Type with Power Nonlinearity
    Askhabov, S.N.
    [J]. Journal of Applied and Industrial Mathematics, 2021, 15 (03) : 365 - 375
  • [9] Generalized solvability of parabolic integro-differential equations
    A. V. Anikushyn
    A. L. Hulianytskyi
    [J]. Differential Equations, 2014, 50 : 98 - 109
  • [10] Generalized solvability of parabolic integro-differential equations
    Anikushyn, A. V.
    Hulianytskyi, A. L.
    [J]. DIFFERENTIAL EQUATIONS, 2014, 50 (01) : 98 - 109