Baire property of some function spaces

被引:0
|
作者
A. V. Osipov
E. G. Pytkeev
机构
[1] Ural Federal University,Krasovskii Institute of Mathematics and Mechanics
[2] Ural State University of Economics,undefined
来源
Acta Mathematica Hungarica | 2022年 / 168卷
关键词
function space; Baire property; -monolithic compact space; Fréchet space; totally disconnected space; Peano continuum; 54C35; 54E52; 46A03; 54C10; 54C45;
D O I
暂无
中图分类号
学科分类号
摘要
A compact space X is called π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi$$\end{document}-monolithic if for any surjective continuous mapping f:X→K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f \colon X \rightarrow K$$\end{document} where K is a metrizable compact space there exists a metrizable compact space T⊆X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T \subseteq X$$\end{document} such that f(T)=K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(T)=K$$\end{document}. A topological space X is Baire if the intersection of any sequence of open dense subsets of X is dense in X. Let Cp(X,Y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_p(X, Y)$$\end{document} denote the space of all continuous Y-valued functions C(X,Y) on a Tychonoff space X with the topology of pointwise convergence. In this paper we have proved that for a totally disconnected space X the space Cp(X,{0,1})\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_p(X,\{0,1\})$$\end{document} is Baire if, and only if, Cp(X,K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_p(X,K)$$\end{document} is Baire for every π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi$$\end{document}-monolithic compact space K.
引用
收藏
页码:246 / 259
页数:13
相关论文
共 50 条
  • [1] BAIRE PROPERTY OF SOME FUNCTION SPACES
    Osipov, A., V
    Pytkeev, E. G.
    ACTA MATHEMATICA HUNGARICA, 2022, 168 (01) : 246 - 259
  • [2] Baire category properties of some Baire type function spaces
    Banakh, T.
    Gabriyelyan, S.
    TOPOLOGY AND ITS APPLICATIONS, 2020, 272
  • [3] A property of connected Baire spaces
    Ferrer, J
    TOPOLOGY AND ITS APPLICATIONS, 1997, 77 (02) : 177 - 182
  • [4] Baire property in product spaces
    Hernandez, Constancio
    Medina, Leonardo Rodriguez
    Tkachenk, Mikhail
    APPLIED GENERAL TOPOLOGY, 2015, 16 (01): : 1 - 13
  • [6] PROPERTY OF LOCALLY CONVEX BAIRE SPACES
    TODD, AR
    SAXON, SA
    MATHEMATISCHE ANNALEN, 1973, 206 (01) : 23 - 34
  • [7] PROPERTY OF LOCALLY CONVEX BAIRE SPACES
    SAXON, SA
    TODD, AR
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (07): : 1057 - &
  • [8] On sets with Baire property in topological spaces
    S. Basu
    Czechoslovak Mathematical Journal, 2000, 50 : 59 - 65
  • [9] On sets with Baire property in topological spaces
    Basu, S
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2000, 50 (01) : 59 - 65
  • [10] OPENNESS, HOMOGENEITY AND BAIRE PROPERTY IN THE REMAINDERS OF SPACES
    Arhangel'skii, Alexander
    Choban, Mitrofan
    Mihaylova, Ekaterina
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2012, 65 (12): : 1623 - 1630