57Fe Mössbauer Investigation of the Substitutional Effect of Praseodymium in 1-2-3 Compounds

被引:0
|
作者
E. Kuzmann
Z. Klencsár
Z. Homonnay
L. Pöppl
A. Vértes
M. Bódogh
I. Kotsis
A. Nath
机构
[1] Loránd Eötvös University,Department of Nuclear Chemistry
[2] University of Veszprém,Department of Silicate Chemistry and Materials Engineering
[3] Drexel University,Department of Chemistry
关键词
Perovskite; Copper Oxide; Charge Neutrality; Spectroscopy Measurement; Praseodymium;
D O I
暂无
中图分类号
学科分类号
摘要
57Fe Mössbauer spectroscopy measurements were performed on the perovskite compounds Eu0.7Pr0.3Ba2(Cu0.9957Fe0.01)3O7-δ, EuBa1.5Pr0.5(Cu0.9957Fe0.01)3O7-δ and EuBa1.3Pr0.7(Cu0.9957Fe0.01)3O7-δ. The observed 57Fe Mössbauer spectra provided an evidence for the correct site assignment of subspectra originating from 57Fe in different microenvironments. Apart from a minor component which was assigned to the 57Fe in the Cu(2) site of the copper oxide plane, all the subspectra could be attributed to the 57Fe in the Cu(1) copper oxide chain site with a fourfold (doublet D1), fivefold (doublet D2) or sixfold (doublet D3) oxygen coordination. In contrast, in the compound EuBa2(Cu0.9957Fe0.01)3O7-δ the 6-coordinated (D3) species has not been observed. The substitution of Pr for Eu or for Ba resulted in an increased occupancy of the O(5) antichain oxygen sites, which was explained by the charge neutrality criterion. Especially, the replacement of Ba2+ with Pr3+ led to an unusually high degree of occupancy of O(5) sites. In the 57Fe Mössbauer spectra the relative area of the 6-coordinated species (D3) increased, and that of the 4-coordinated one (D1) vanished completely in the case when Pr was substituted for Ba. Furthermore, the proportion of the 6-coordinated (D3) species increased at the expense of the 5-coordinated (D2) one with an increasing concentration of Pr at the Ba site. These experimental results are consistent with the variety of Mössbauer results reported so far.
引用
收藏
页码:117 / 121
页数:4
相关论文
共 50 条
  • [1] 57Fe Mossbauer investigation of the substitutional effect of praseodymium in 1-2-3 compounds
    Kuzmann, E
    Klencsár, Z
    Homonnay, Z
    Pöppl, L
    Vértes, A
    Bódogh, M
    Kotsis, I
    Nath, A
    JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, 2000, 246 (01) : 117 - 121
  • [2] 57Fe Mössbauer Spectroscopic Study of Fe–B Compounds
    Takashi Segi
    Suburo Nasu
    Shotaro Morimoto
    Hisato Tokoro
    Hyperfine Interactions, 2004, 156-157 : 241 - 245
  • [3] Synthetic versiliaite and apuanite: investigation by 57Fe Mössbauer spectroscopy
    Ryan D. Bayliss
    Frank J. Berry
    James C. Cumby
    Colin Greaves
    Jean-Claude Jumas
    Jose F. Marco
    Hyperfine Interactions, 2016, 237
  • [4] 57Fe Mössbauer spectroscopy of tektites
    S. Rossano
    E. Balan
    G. Morin
    J.-P. Bauer
    G. Calas
    C. Brouder
    Physics and Chemistry of Minerals, 1999, 26 : 530 - 538
  • [5] 57Fe Mössbauer spectroscopy of synthesized ɛ-Fe2O3 nanoparticles
    Adriana Lancok
    Marcel Miglierini
    Jaroslav Kohout
    The Physics of Metals and Metallography, 2010, 109 : 524 - 533
  • [6] The effect of thermal treatment on the 57Fe Mössbauer spectrum of beryl
    Geraldo Magela da Costa
    Gabriel de Oliveira Polli
    Márcio A. Kahwage
    Eddy de Grave
    Antônio Claret Soares Sabioni
    Júlio Cesar Mendes
    Physics and Chemistry of Minerals, 2006, 33 : 161 - 166
  • [7] 57Fe Mössbauer Study of Magnetic Nanowires
    De-Sheng Xue
    Fa-Shen Li
    Hyperfine Interactions, 2004, 156-157 : 31 - 40
  • [8] 57Fe Mössbauer study of the chainpur meteorite
    Nancy N. Elewa
    R. Cobas
    J. M. Cadogan
    Hyperfine Interactions, 2016, 237
  • [9] A 57Fe Mössbauer study of nanostructured Sm2Fe17-xCoxC3
    Bessais, L.
    Djéga-Mariadassou, C.
    Tung, D.K.
    Hong, V.V.
    Phuc, N.X.
    Journal of Alloys and Compounds, 2008, 455 (1-2): : 35 - 41
  • [10] Mössbauer Diffractometry on Chemical Sites of 57Fe in Fe3Al
    J. Y. Y. Lin
    B. Fultz
    U. Kriplani
    Hyperfine Interactions, 2002, 141-142 : 145 - 150