Ovarian torsion: developing a machine-learned algorithm for diagnosis

被引:0
|
作者
Jeffrey P. Otjen
A. Luana Stanescu
Adam M. Alessio
Marguerite T. Parisi
机构
[1] Seattle Children’s Hospital and the University of Washington,Department of Radiology
[2] Seattle Children’s Hospital,Computational Mathematics, Science, and Engineering (CMSE), Biomedical Engineering (BME) and Radiology, Institute for Quantitative Health Science & Engineering (IQ)
[3] Michigan State University,undefined
来源
Pediatric Radiology | 2020年 / 50卷
关键词
Algorithm; Children; Machine learning; Medialization; Ovary; Torsion; Ultrasound;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:706 / 714
页数:8
相关论文
共 50 条
  • [1] Correction to: Ovarian torsion: developing a machine-learned algorithm for diagnosis
    Jeffrey P. Otjen
    A. Luana Stanescu
    Adam M. Alessio
    Marguerite T. Parisi
    [J]. Pediatric Radiology, 2020, 50 : 757 - 758
  • [2] Ovarian torsion: developing a machine-learned algorithm for diagnosis (vol 34, pg 851, 2020)
    Otjen, Jeffrey P.
    Stanescu, A. Luana
    Alessio, Adam M.
    Parisi, Marguerite T.
    [J]. PEDIATRIC RADIOLOGY, 2020, 50 (05) : 757 - 758
  • [3] The machine-learned radii of atoms
    Nikolaienko, Tymofii Yu.
    Bulavin, Leonid A.
    [J]. COMPUTATIONAL AND THEORETICAL CHEMISTRY, 2021, 1204
  • [4] A Machine-Learned Ranking Algorithm for Dynamic and Personalised Car Pooling Services
    Campana, Mattia Giovanni
    Delmastro, Franca
    Bruno, Raffaele
    [J]. 2016 IEEE 19TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2016, : 1856 - 1862
  • [5] Machine-Learned Premise Selection for Lean
    Piotrowski, Bartosz
    Mir, Ramon Fernandez
    Ayers, Edward
    [J]. AUTOMATED REASONING WITH ANALYTIC TABLEAUX AND RELATED METHODS, TABLEAUX 2023, 2023, 14278 : 175 - 186
  • [6] Understanding machine-learned density functionals
    Li, Li
    Snyder, John C.
    Pelaschier, Isabelle M.
    Huang, Jessica
    Niranjan, Uma-Naresh
    Duncan, Paul
    Rupp, Matthias
    Mueller, Klaus-Robert
    Burke, Kieron
    [J]. INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2016, 116 (11) : 819 - 833
  • [7] A Supervised Machine-learned Algorithm to IDENTIFY PH in Patients With New Onset Symptoms
    Bridges, C. R.
    Burton, T.
    Fathieh, F.
    Khosousi, A.
    Shadforth, I.
    Ramchandani, S.
    Quinn, D. A.
    Gitton, X.
    Mclaughlin, V. V.
    [J]. AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2023, 207
  • [8] Developing Machine-Learned Potentials for Coarse-Grained Molecular Simulations: Challenges and Pitfalls
    Ricci, Eleonora
    Giannakopoulos, George
    Karkaletsis, Vangelis
    Theodorou, Doros N.
    Vergadou, Niki
    [J]. PROCEEDINGS OF THE 12TH HELLENIC CONFERENCE ON ARTIFICIAL INTELLIGENCE, SETN 2022, 2022,
  • [9] Machine-learned electron densities of nucleic acids
    Lee, Alex J.
    Rackers, Joshua A.
    Bricker, William P.
    [J]. BIOPHYSICAL JOURNAL, 2024, 123 (03) : 499A - 499A
  • [10] Machine-learned potentials for eucryptite: A systematic comparison
    Hill, Jorg-Rudiger
    Mannstadt, Wolfgang
    [J]. JOURNAL OF MATERIALS RESEARCH, 2023, 38 (24) : 5188 - 5197