H∞ Control for Battery/Supercapacitor Hybrid Energy Storage System Used in Electric Vehicles

被引:0
|
作者
Zhifeng Bai
Zengfeng Yan
Xiaolan Wu
Jun Xu
Binggang Cao
机构
[1] Xi’an University of Architecture and Technology,School of Mechanical and Electrical Engineering
[2] Xi’an Jiaotong University,School of Mechanical Engineering
关键词
Electric vehicle; Hybrid energy storage system (HESS); H; controller; Supercapacitor; Regenerative braking;
D O I
暂无
中图分类号
学科分类号
摘要
This paper proposes a control strategy of a hybrid energy storage system (HESS) based on simplified 2th-order model. The HESS uses a bidirectional DC/DC converter to connect the supercapacitors (SC) with the battery. Two control objectives, the output current of the SC during the traction procedure and the charging current of the SC while regenerative braking, are regulated by using the DC/DC converter. Two H∞ controllers are designed to control the output and charging current of the SC to their reference values, which are generated by the energy management strategy (EMS). Experimental results show that the proposed control method achieves a satisfactory performance, including a low steady-state tracking error and high response speed when the load power varies in a wide range.
引用
收藏
页码:1287 / 1296
页数:9
相关论文
共 50 条
  • [1] H∞ Control for Battery/Supercapacitor Hybrid Energy Storage System Used in Electric Vehicles
    Bai, Zhifeng
    Yan, Zengfeng
    Wu, Xiaolan
    Xu, Jun
    Cao, Binggang
    [J]. INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2019, 20 (06) : 1287 - 1296
  • [2] Control of a battery/supercapacitor hybrid energy storage system for electric vehicles
    Zhang, Lijun
    Xia, Xiaohua
    Barzegar, Farshad
    [J]. PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 9560 - 9565
  • [3] Hybrid battery/supercapacitor energy storage system for the electric vehicles
    Kouchachvili, Lia
    Yaici, Wahiba
    Entchev, Evgueniy
    [J]. JOURNAL OF POWER SOURCES, 2018, 374 : 237 - 248
  • [4] Sizing of Battery/Supercapacitor Hybrid Energy Storage System for Electric Vehicles
    Tien Nguyen-Minh
    Thanh Vo-Duy
    Bao-Huy Nguyen
    Ta, Minh C.
    Trovao, Joao Pedro F.
    [J]. 2022 IEEE VEHICLE POWER AND PROPULSION CONFERENCE (VPPC), 2022,
  • [5] Numerical modeling of hybrid supercapacitor battery energy storage system for electric vehicles
    Saw, Lip Huat
    Poon, Hiew Mun
    Chong, Wen Tong
    Wang, Chin-Tsan
    Yew, Ming Chian
    Yew, Ming Kun
    Ng, Tan Ching
    [J]. INNOVATIVE SOLUTIONS FOR ENERGY TRANSITIONS, 2019, 158 : 2750 - 2755
  • [6] Dynamic Simulation of Battery/Supercapacitor Hybrid Energy Storage System for the Electric Vehicles
    Yaici, Wahiba
    Kouchachvili, Lia
    Entchev, Evgueniy
    Longo, Michela
    [J]. 2019 8TH INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY RESEARCH AND APPLICATIONS (ICRERA 2019), 2019, : 460 - 465
  • [7] Battery-Supercapacitor Hybrid Energy Storage System Used in Electric Vehicle
    Karangia, Rahul
    Jadeja, Mehulsinh
    Upadhyay, Chetankumar
    Chandwani, Hina
    [J]. 2013 INTERNATIONAL CONFERENCE ON ENERGY EFFICIENT TECHNOLOGIES FOR SUSTAINABILITY (ICEETS), 2013,
  • [8] Sliding-mode and Lyapunov function-based control for battery/supercapacitor hybrid energy storage system used in electric vehicles
    Song, Ziyou
    Hou, Jun
    Hofmann, Heath
    Li, Jianqiu
    Ouyang, Minggao
    [J]. ENERGY, 2017, 122 : 601 - 612
  • [9] Effect of Battery/Supercapacitor Hybrid Storage System on Battery Voltage in Electric Vehicles
    Nguyen, Chi T. P.
    Bao-Huy Nguyen
    Trovao, Joao Pedro F.
    Ta, Minh C.
    [J]. 2022 IEEE VEHICLE POWER AND PROPULSION CONFERENCE (VPPC), 2022,
  • [10] A Standalone Energy Management System of Battery/Supercapacitor Hybrid Energy Storage System for Electric Vehicles Using Model Predictive Control
    Nguyen, Ngoc-Duc
    Yoon, Changwoo
    Lee, Young Il
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2023, 70 (05) : 5104 - 5114