The square Frobenius number

被引:0
|
作者
Jonathan Chappelon
Jorge Luis Ramírez Alfonsín
机构
[1] Univ. Montpellier,IMAG
[2] CNRS,undefined
[3] UMI2924 - Jean-Christophe Yoccoz,undefined
[4] CNRS-IMPA,undefined
来源
Semigroup Forum | 2022年 / 105卷
关键词
Numerical semigroups; Frobenius number; Perfect square integer;
D O I
暂无
中图分类号
学科分类号
摘要
Let S=s1,…,sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S=\left\langle s_1,\ldots ,s_n\right\rangle $$\end{document} be a numerical semigroup generated by the relatively prime positive integers s1,…,sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_1,\ldots ,s_n$$\end{document}. Let k⩾2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\geqslant 2$$\end{document} be an integer. In this paper, we consider the following k-power variant of the Frobenius number of S defined as krS:=the largestk-power integer not belonging toS.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {}^{k\!}r\!\left( S\right) := \text { the largest } k \text {-power integer not belonging to } S. \end{aligned}$$\end{document}In this paper, we investigate the case k=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=2$$\end{document}. We give an upper bound for 2rSA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^{2\!}r\!\left( S_A\right) $$\end{document} for an infinite family of semigroups SA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_A$$\end{document} generated by arithmetic progressions. The latter turns out to be the exact value of 2rs1,s2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^{2\!}r\!\left( \left\langle s_1,s_2\right\rangle \right) $$\end{document} under certain conditions. We present an exact formula for 2rs1,s1+d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^{2\!}r\!\left( \left\langle s_1,s_1+d \right\rangle \right) $$\end{document} when d=3,4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=3,4$$\end{document} and 5, study 2rs1,s1+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^{2\!}r\!\left( \left\langle s_1,s_1+1 \right\rangle \right) $$\end{document} and 2rs1,s1+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^{2\!}r\!\left( \left\langle s_1,s_1+2 \right\rangle \right) $$\end{document} and put forward two relevant conjectures. We finally discuss some related questions.
引用
收藏
页码:149 / 171
页数:22
相关论文
共 50 条
  • [1] The square Frobenius number
    Chappelon, Jonathan
    Ramirez Alfonsin, Jorge Luis
    SEMIGROUP FORUM, 2022, 105 (01) : 149 - 171
  • [2] The Frobenius number and α-invariant
    Sabzrou, Hossein
    Rahmati, Farhad
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2006, 36 (06) : 2021 - 2026
  • [3] On a Generalization of the Frobenius Number
    Brown, Alexander
    Dannenberg, Eleanor
    Fox, Jennifex
    Hanna, Joshua
    Keck, Katherine
    Moore, Alexander
    Robbins, Zachary
    Samples, Brandon
    Stankewicz, James
    JOURNAL OF INTEGER SEQUENCES, 2010, 13 (01)
  • [4] THE FROBENIUS NUMBER OF SOME SEMIGROUPS
    FROBERG, R
    COMMUNICATIONS IN ALGEBRA, 1994, 22 (14) : 6021 - 6024
  • [5] The Frobenius Number for Jacobsthal Triples Associated with Number of Solutions
    Komatsu, Takao
    Pita-Ruiz, Claudio
    AXIOMS, 2023, 12 (02)
  • [6] CLASS NUMBER RELATION IN FROBENIUS EXTENSIONS OF NUMBER FIELDS
    WALTER, CD
    MATHEMATIKA, 1977, 24 (48) : 216 - 225
  • [7] The Frobenius number associated with the number of representations for sequences of repunits
    Komatsu, Takao
    COMPTES RENDUS MATHEMATIQUE, 2023, 361 (01) : 73 - 89
  • [8] SQUARE-FREE DISCRIMINANTS OF FROBENIUS RINGS
    David, Chantal
    Jimenez Urroz, Jorge
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2010, 6 (06) : 1391 - 1412
  • [9] On a conjecture by Wilf about the Frobenius number
    Alessio Moscariello
    Alessio Sammartano
    Mathematische Zeitschrift, 2015, 280 : 47 - 53
  • [10] On the Frobenius number of certain numerical semigroups
    Hellus, M.
    Rechenauer, A.
    Waldi, R.
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2021, 31 (03) : 519 - 532