Over the last few years, Internet of Things (IoT) has opened the doors to innovations that facilitate interactions among things and humans. Focusing on healthcare domain, IoT devices such as medical sensors, visual sensors, cameras, and wireless sensor network are leading this evolutionary trend. In this direction, the paper proposes a novel, IoT-aware student-centric stress monitoring framework to predict student stress index at a particular context. Bayesian Belief Network (BBN) is used to classify the stress event as normal or abnormal using physiological readings collected from medical sensors at fog layer. Abnormal temporal structural data which is time-enriched dataset sequence is analyzed for various stress-related parameters at cloud layer. To compute the student stress index, a two-stage Temporal Dynamic Bayesian Network (TDBN) model is formed. This model computes stress based on four parameters, namely, leaf node evidences, workload, context, and student health trait. After computing the stress index of the student, decisions are taken in the form of alert generation mechanism with the deliverance of time-sensitive information to caretaker or responder. Experiments are conducted both at fog and cloud layer which hold evidence for the utility and accuracy of the BBN classifier and TDBN predictive model in our proposed system.