Electrochemical Li Topotactic Reaction in Layered SnP3 for Superior Li-Ion Batteries

被引:0
|
作者
Jae-Wan Park
Cheol-Min Park
机构
[1] School of Materials Science and Engineering,
[2] Kumoh National Institute of Technology,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The development of new anode materials having high electrochemical performances and interesting reaction mechanisms is highly required to satisfy the need for long-lasting mobile electronic devices and electric vehicles. Here, we report a layer crystalline structured SnP3 and its unique electrochemical behaviors with Li. The SnP3 was simply synthesized through modification of Sn crystallography by combination with P and its potential as an anode material for LIBs was investigated. During Li insertion reaction, the SnP3 anode showed an interesting two-step electrochemical reaction mechanism comprised of a topotactic transition (0.7–2.0 V) and a conversion (0.0–2.0 V) reaction. When the SnP3-based composite electrode was tested within the topotactic reaction region (0.7–2.0 V) between SnP3 and LixSnP3 (x ≤ 4), it showed excellent electrochemical properties, such as a high volumetric capacity (1st discharge/charge capacity was 840/663 mA h cm−3) with a high initial coulombic efficiency, stable cycle behavior (636 mA h cm−3 over 100 cycles), and fast rate capability (550 mA h cm−3 at 3C). This layered SnP3 anode will be applicable to a new anode material for rechargeable LIBs.
引用
收藏
相关论文
共 50 条
  • [1] Electrochemical Li Topotactic Reaction in Layered SnP3 for Superior Li-Ion Batteries
    Park, Jae-Wan
    Park, Cheol-Min
    SCIENTIFIC REPORTS, 2016, 6
  • [2] Electrochemical Oscillation in Li-Ion Batteries
    Li, De
    Sun, Yang
    Yang, Zhenzhong
    Gu, Lin
    Chen, Yong
    Zhou, Haoshen
    JOULE, 2018, 2 (07) : 1265 - 1277
  • [3] Simulation of Electrochemical Heating in Li-Ion Batteries
    Dusikova, Dominika
    Zemen, Jan
    2024 47TH INTERNATIONAL SPRING SEMINAR ON ELECTRONICS TECHNOLOGY, ISSE 2024, 2024,
  • [4] Scanning electrochemical microscopy of Li-ion batteries
    Ventosa, E.
    Schuhmann, W.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (43) : 28441 - 28450
  • [5] Ag Embedded Li3VO4 as Superior Anode for Li-Ion Batteries
    Kang, Tao
    Ni, Shibing
    Chen, Qichang
    Li, Tao
    Chao, Dongliang
    Yang, Xuelin
    Zhao, Jinbao
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (03) : A5295 - A5300
  • [6] Superior electrochemical performance of Li3VO4/N-doped C as an anode for Li-ion batteries
    Ni, Shibing
    Zhang, Jicheng
    Ma, Jianjun
    Yang, Xuelin
    Zhang, Lulu
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (35) : 17951 - 17955
  • [7] Layered cathode for improving safety of Li-ion batteries
    Imachi, Naoki
    Takano, Yasuo
    Fujimoto, Hiroyuki
    Kida, Yoshinori
    Fujitani, Shin
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (05) : A412 - A416
  • [8] Surface Reconstruction in Li-Rich Layered Oxides of Li-Ion Batteries
    Jarvis, Karalee
    Wang, Chih-Chieh
    Varela, Maria
    Unocic, Raymond R.
    Manthiram, Arumugam
    Ferreira, Paulo J.
    CHEMISTRY OF MATERIALS, 2017, 29 (18) : 7668 - 7674
  • [9] Synthesis, microstructure, and electrochemical performance of Li-rich layered oxide cathode materials for Li-ion batteries
    Е. V. Makhonina
    L. S. Pechen
    V. V. Volkov
    А. М. Rumyantsev
    Yu. М. Koshtyal
    А. О. Dmitrienko
    Yu. А. Politov
    V. S. Pervov
    I. L. Eremenko
    Russian Chemical Bulletin, 2019, 68 : 301 - 312
  • [10] Li-Ion Batteries
    Battaglini, John
    ADVANCED MATERIALS & PROCESSES, 2010, 168 (07): : 26 - 27