Production of acetoin and its derivative tetramethylpyrazine from okara hydrolysate with Bacillus subtilis

被引:7
|
作者
Li, Tao [1 ]
Liu, Ping [1 ]
Guo, Gege [1 ]
Liu, Zhaoxing [1 ]
Zhong, Lei [1 ]
Guo, Lianxia [1 ]
Chen, Cheng [1 ]
Hao, Ning [1 ]
Ouyang, Pingkai [1 ]
机构
[1] Nanjing Tech Univ, Coll Biotechnol & Pharmaceut Engn, Jiangsu Natl Synerget Innovat Ctr Adv Mat SICAM, State Key Lab Mat Oriented Chem Engn, Nanjing 211816, Peoples R China
关键词
Okara; Acetoin; Tetramethylpyrazine (TTMP); Bacillus subtilis; Galactose; PRETREATMENT; GLUCOSE; RESIDUE; BAGASSE;
D O I
10.1186/s13568-023-01532-z
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Okara, a renewable biomass resource, is a promising fermentative raw material for the bio-production of value-added chemicals due to its abundance and low-costs. we developed a process for the enzymatic hydrolysis of okara, and then engineered Bacillus subtilis to utilize mixed sugars to produce acetoin in okara hydrolysis without the addition of a supplemental nitrogen source. Okara was initially hydrolyzed with cellulase, beta-glucosidase, and pectinase to obtain okara hydrolysate containing mixed sugars (32.78 +/- 0.23 g/L glucose, 1.43 +/- 0.064 g/L arabinose, 7.74 +/- 0.11 g/L galactose) and amino acids. In this study, Bacillus subtilis 168 was used as the acetoin-producing strain, and the key genes bdhA and acoA of the acetoin catabolism pathway were knocked out to improve the fermentation yield of acetoin. In order to utilize the galactose in the hydrolysate, the recombinant strain BS03 (Bacillus subtilis168 increment bdhA increment acoA) was used to overexpress the arabinose transporter-encoding gene (araE) drive heterologous expression of the Leloir pathway gene (galKTE). The corn dry powder concentration was optimized to 29 g/L in the reducing sugar okara hydrolysate. The results show that the recombinant bacterium BS03 could still synthesize 11.79 g/L acetoin without using corn dry powder as a nitrogen source. Finally, using okara enzymatic hydrolysate as the carbon and nitrogen source, 11.11 g/L and 29.7 g/L acetoin were obtained by batch fermentation and fed-batch fermentation, respectively, which was further converted to 5.33 g/L and 13.37 g/L tetramethylpyrazine (TTMP) by reaction with an ammonium salt.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Production of acetoin and its derivative tetramethylpyrazine from okara hydrolysate with Bacillus subtilis (vol 13, 25 2023)
    Li, Tao
    Liu, Ping
    Guo, Gege
    Liu, Zhaoxing
    Zhong, Lei
    Guo, Lianxia
    Chen, Cheng
    Hao, Ning
    Ouyang, Pingkai
    AMB EXPRESS, 2024, 14 (01):
  • [2] Engineered Bacillus subtilis for the Production of Tetramethylpyrazine,(R,R)-2,3-Butanediol and Acetoin
    Shi, Lin
    Lin, Yuan
    Song, Jiaao
    Li, Hongxing
    Gao, Yinhao
    Lin, Yonghong
    Huang, Xiaowen
    Meng, Wu
    Qin, Weishuai
    FERMENTATION-BASEL, 2023, 9 (05):
  • [3] High production of acetoin from glycerol by Bacillus subtilis 35
    Tsigoriyna, Lidia
    Petrova, Penka
    Petrov, Kaloyan
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2023, 107 (01) : 175 - 185
  • [4] High production of acetoin from glycerol by Bacillus subtilis 35
    Lidia Tsigoriyna
    Penka Petrova
    Kaloyan Petrov
    Applied Microbiology and Biotechnology, 2023, 107 : 175 - 185
  • [5] Engineering Bacillus subtilis for acetoin production from glucose and xylose mixtures
    Chen, Tao
    Liu, Wei-xi
    Fu, Jing
    Zhang, Bo
    Tang, Ya-jie
    JOURNAL OF BIOTECHNOLOGY, 2013, 168 (04) : 499 - 505
  • [6] Metabolic engineering of Bacillus subtilis for enhanced production of acetoin
    Wang, Meng
    Fu, Jing
    Zhang, Xueyu
    Chen, Tao
    BIOTECHNOLOGY LETTERS, 2012, 34 (10) : 1877 - 1885
  • [7] Metabolic engineering of Bacillus subtilis for enhanced production of acetoin
    Meng Wang
    Jing Fu
    Xueyu Zhang
    Tao Chen
    Biotechnology Letters, 2012, 34 : 1877 - 1885
  • [8] Metabolic engineering of Bacillus subtilis to enhance the production of tetramethylpyrazine
    Meng, Wu
    Wang, Ruiming
    Xiao, Dongguang
    BIOTECHNOLOGY LETTERS, 2015, 37 (12) : 2475 - 2480
  • [9] Metabolic engineering of Bacillus subtilis to enhance the production of tetramethylpyrazine
    Wu Meng
    Ruiming Wang
    Dongguang Xiao
    Biotechnology Letters, 2015, 37 : 2475 - 2480
  • [10] Engineering genome-reduced Bacillus subtilis for acetoin production from xylose
    Yan, Panpan
    Wu, Yuanqing
    Yang, Li
    Wang, Zhiwen
    Chen, Tao
    BIOTECHNOLOGY LETTERS, 2018, 40 (02) : 393 - 398