Asperosaponin VI promotes bone marrow stromal cell osteogenic differentiation through the PI3K/AKT signaling pathway in an osteoporosis model

被引:0
|
作者
Ke Ke
Qi Li
Xiaofeng Yang
Zhijian Xie
Yu Wang
Jue Shi
Linfeng Chi
Weijian Xu
Lingling Hu
Huali Shi
机构
[1] Hangzhou Medical College,
[2] Stomatology Hospital,undefined
[3] School of Medicine,undefined
[4] Zhejiang university,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Asperosaponin VI (ASA VI), a natural compound isolated from the well-known traditional Chinese herb Radix Dipsaci, has an important role in promoting osteoblast formation. However, its effects on osteoblasts in the context of osteoporosis is unknown. This study aimed to investigate the effects and mechanism of ASA VI action on the proliferation and osteogenic differentiation of bone marrow stromal cells isolated from the ovariectomized rats (OVX rBMSCs). The toxicity of ASA VI and its effects on the proliferation of OVX rBMSCs were measured using a CCK-8 assay. Various osteogenic differentiation markers were also analyzed, such as ALP activity, calcified nodule formation, and the expression of osteogenic genes, i.e., ALP, OCN, COL 1 and RUNX2. The results indicated that ASA VI promoted the proliferation of OVX rBMSCs and enhanced ALP activity and calcified nodule formation. In addition, while ASA VI enhanced the expression of ALP, OCN, Col 1 and RUNX2, treatment with LY294002 reduced all of these osteogenic effects and reduced the p-AKT levels induced by ASA VI. These results suggest that ASA VI promotes the osteogenic differentiation of OVX rBMSCs by acting on the phosphatidylinositol—3 kinase/AKT signaling pathway.
引用
收藏
相关论文
共 50 条
  • [1] Asperosaponin VI promotes bone marrow stromal cell osteogenic differentiation through the PI3K/AKT signaling pathway in an osteoporosis model
    Ke, Ke
    Li, Qi
    Yang, Xiaofeng
    Xie, Zhijian
    Wang, Yu
    Shi, Jue
    Chi, Linfeng
    Xu, Weijian
    Hu, Lingling
    Shi, Huali
    SCIENTIFIC REPORTS, 2016, 6
  • [2] Phenytoin regulates osteogenic differentiation of human bone marrow stem cells by PI3K/Akt pathway
    Zhang, Zeliang
    Shang, Wei
    Zhao, Xicong
    Lin, Lisong
    REGENERATIVE THERAPY, 2023, 24 : 201 - 210
  • [3] Cornuside I promoted osteogenic differentiation of bone mesenchymal stem cells through PI3K/Akt signaling pathway
    Gao, Feng
    Xia, Sheng-Li
    Wang, Xiu-Hui
    Zhou, Xiao-Xiao
    Wang, Jun
    JOURNAL OF ORTHOPAEDIC SURGERY AND RESEARCH, 2021, 16 (01)
  • [4] Cornuside I promoted osteogenic differentiation of bone mesenchymal stem cells through PI3K/Akt signaling pathway
    Feng Gao
    Sheng-Li Xia
    Xiu-Hui Wang
    Xiao-Xiao Zhou
    Jun Wang
    Journal of Orthopaedic Surgery and Research, 16
  • [5] The PI3K/AKT cell signaling pathway is involved in regulation of osteoporosis
    Xi, Jian-Cheng
    Zang, Hai-Yu
    Guo, Li-Xin
    Xue, Hai-Bin
    Liu, Xiang-Dong
    Bai, Yi-Bing
    Ma, Yuan-Zheng
    JOURNAL OF RECEPTORS AND SIGNAL TRANSDUCTION, 2015, 35 (06) : 640 - 645
  • [6] Extracellular IL-37 promotes osteogenic differentiation of human bone marrow mesenchymal stem cells via activation of the PI3K/AKT signaling pathway
    Ye, Chenyi
    Zhang, Wei
    Hang, Kai
    Chen, Mo
    Hou, Weiduo
    Chen, Jianzhong
    Chen, Xi
    Chen, Erman
    Tang, Lan
    Lu, Jinwei
    Ding, Qianhai
    Jiang, Guangyao
    Hong, Baojian
    He, Rongxin
    CELL DEATH & DISEASE, 2019, 10 (10)
  • [7] Extracellular IL-37 promotes osteogenic differentiation of human bone marrow mesenchymal stem cells via activation of the PI3K/AKT signaling pathway
    Chenyi Ye
    Wei Zhang
    Kai Hang
    Mo Chen
    Weiduo Hou
    Jianzhong Chen
    Xi Chen
    Erman Chen
    Lan Tang
    Jinwei Lu
    Qianhai Ding
    Guangyao Jiang
    Baojian Hong
    Rongxin He
    Cell Death & Disease, 10
  • [8] Curcumin promotes osteogenic differentiation of periodontal ligament stem cells through the PI3K/AKT/Nrf2 signaling pathway
    Xiong, Yixuan
    Zhao, Bin
    Zhang, Wenjing
    Jia, Linglu
    Zhang, Yunpeng
    Xu, Xin
    IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES, 2020, 23 (07) : 954 - 960
  • [9] YBX1 Promotes MSC Osteogenic Differentiation by Activating the PI3K/AKT Pathway
    Chen, Jiayu
    Liu, Zhanliang
    Zhang, Huicheng
    Yang, Yongqian
    Zeng, Huangxiang
    Zhong, Rongwei
    Lai, Shangdao
    Liao, Hongxing
    CURRENT STEM CELL RESEARCH & THERAPY, 2023, 18 (04) : 513 - 521
  • [10] Resveratrol Alleviates Osteoporosis by Promoting Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells via SITR1/PI3K/AKT Pathway
    Han, Xu
    Jia, Guo-feng
    Zhu, Feng
    INTERNATIONAL JOURNAL OF MORPHOLOGY, 2024, 42 (01): : 216 - 224