Multiplicity of Solutions for a Nonlinear Klein-Gordon-Maxwell System

被引:0
|
作者
Xiaoming He
机构
[1] Minzu University of China,College of Sciences
来源
关键词
Klein-Gordon-Maxwell equation; Large energy solutions; Variational methods; 35J60; 35Q40;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the nonlinear Klein-Gordon-Maxwell system \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left \{\begin{array}{l@{\quad}l} -\Delta u+V(x)u-(2\omega+\phi)\phi u=f(x,u),&x\in{\mathbb{R}}^3,\\ \Delta \phi=(\omega+\phi)u^2,&x\in{\mathbb{R}}^3. \end{array} \right . $$\end{document} By means of a variant fountain theorem and the symmetric mountain pass theorem, we obtain the existence of infinitely many large energy solutions.
引用
收藏
页码:237 / 250
页数:13
相关论文
共 50 条