A Note on the Cops and Robber Game on Graphs Embedded in Non-Orientable Surfaces

被引:0
|
作者
Nancy E. Clarke
Samuel Fiorini
Gwenaël Joret
Dirk Oliver Theis
机构
[1] Acadia University,Department of Mathematics and Statistics
[2] Université Libre de Bruxelles,Département de Mathématique
[3] Université Libre de Bruxelles,Département d’Informatique
[4] Otto-von-Guericke-Universität Magdeburg,Fakultät für Mathematik
来源
Graphs and Combinatorics | 2014年 / 30卷
关键词
Games on graphs; Cops and robber game; Cop number; Graphs on surfaces; 05C99; 05C10; 91A43;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the two-player, complete information game of Cops and Robber played on undirected, finite, reflexive graphs. A number of cops and one robber are positioned on vertices and take turns in sliding along edges. The cops win if, after a move, a cop and the robber are on the same vertex. The minimum number of cops needed to catch the robber on a graph is called the cop number of that graph. Let c(g) be the supremum over all cop numbers of graphs embeddable in a closed orientable surface of genus g, and likewise \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde c(g)}$$\end{document} for non-orientable surfaces. It is known (Andreae, 1986) that, for a fixed surface, the maximum over all cop numbers of graphs embeddable in this surface is finite. More precisely, Quilliot (1985) showed that c(g) ≤ 2g + 3, and Schröder (2001) sharpened this to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${c(g)\le \frac32g + 3}$$\end{document}. In his paper, Andreae gave the bound \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde c(g) \in O(g)}$$\end{document} with a weak constant, and posed the question whether a stronger bound can be obtained. Nowakowski & Schröder (1997) obtained \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde c(g) \le 2g+1}$$\end{document}. In this short note, we show \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde c(g) \leq c(g-1)}$$\end{document}, for any g ≥ 1. As a corollary, using Schröder’s results, we obtain the following: the maximum cop number of graphs embeddable in the projective plane is 3, the maximum cop number of graphs embeddable in the Klein Bottle is at most 4, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde c(3) \le 5}$$\end{document}, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde c(g) \le \frac32g + 3/2}$$\end{document} for all other g.
引用
收藏
页码:119 / 124
页数:5
相关论文
共 50 条