Coherent spin transport through helical edge states of topological insulator

被引:0
|
作者
R. A. Niyazov
D. N. Aristov
V. Yu. Kachorovskii
机构
[1] Ioffe Institute,Department of Physics
[2] St. Petersburg State University,undefined
[3] NRC ‘Kurchatov Institute’,undefined
[4] Petersburg Nuclear Physics Institute,undefined
[5] CENTERA Laboratories,undefined
[6] Institute of High Pressure Physics,undefined
[7] Polish Academy of Sciences,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study coherent spin transport through helical edge states of topological insulator tunnel-coupled to metallic leads. We demonstrate that unpolarized incoming electron beam acquires finite polarization after transmission through such a setup provided that edges contain at least one magnetic impurity. The finite polarization appears even in the fully classical regime and is therefore robust to dephasing. There is also a quantum magnetic field-tunable contribution to the polarization, which shows sharp identical Aharonov-Bohm resonances as a function of magnetic flux—with the period hc/2e—and survives at relatively high temperature. We demonstrate that this tunneling interferometer can be described in terms of ensemble of flux-tunable qubits giving equal contributions to conductance and spin polarization. The number of active qubits participating in the charge and spin transport is given by the ratio of the temperature and the level spacing. The interferometer can effectively operate at high temperature and can be used for quantum calculations. In particular, the ensemble of qubits can be described by a single Hadamard operator. The obtained results open wide avenue for applications in the area of quantum computing.
引用
收藏
相关论文
共 50 条
  • [1] Coherent spin transport through helical edge states of topological insulator
    Niyazov, R. A.
    Aristov, D. N.
    Kachorovskii, V. Yu.
    [J]. NPJ COMPUTATIONAL MATERIALS, 2020, 6 (01)
  • [2] Quantized spin pump on helical edge states of a topological insulator
    Mei-Juan Wang
    Jun Wang
    Jun-Feng Liu
    [J]. Scientific Reports, 9
  • [3] Quantized spin pump on helical edge states of a topological insulator
    Wang, Mei-Juan
    Wang, Jun
    Liu, Jun-Feng
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [4] Generic helical edge states due to Rashba spin-orbit coupling in a topological insulator
    Ortiz, Laura
    Molina, Rafael A.
    Platero, Gloria
    Lunde, Anders Mathias
    [J]. PHYSICAL REVIEW B, 2016, 93 (20)
  • [5] Observation of phononic helical edge states in a mechanical topological insulator
    Suesstrunk, Roman
    Huber, Sebastian D.
    [J]. SCIENCE, 2015, 349 (6243) : 47 - 50
  • [6] A tunable topological insulator in the spin helical Dirac transport regime
    Hsieh, D.
    Xia, Y.
    Qian, D.
    Wray, L.
    Dil, J. H.
    Meier, F.
    Osterwalder, J.
    Patthey, L.
    Checkelsky, J. G.
    Ong, N. P.
    Fedorov, A. V.
    Lin, H.
    Bansil, A.
    Grauer, D.
    Hor, Y. S.
    Cava, R. J.
    Hasan, M. Z.
    [J]. NATURE, 2009, 460 (7259) : 1101 - 1105
  • [7] A tunable topological insulator in the spin helical Dirac transport regime
    D. Hsieh
    Y. Xia
    D. Qian
    L. Wray
    J. H. Dil
    F. Meier
    J. Osterwalder
    L. Patthey
    J. G. Checkelsky
    N. P. Ong
    A. V. Fedorov
    H. Lin
    A. Bansil
    D. Grauer
    Y. S. Hor
    R. J. Cava
    M. Z. Hasan
    [J]. Nature, 2009, 460 : 1101 - 1105
  • [8] Dynamic nuclear polarization from topological insulator helical edge states
    Russo, Antonio
    Barnes, Edwin
    Economou, Sophia E.
    [J]. PHYSICAL REVIEW B, 2018, 98 (23)
  • [9] Dual topological insulator with mirror symmetry protected helical edge states
    Campos, Warlley H.
    Penteado, Poliana H.
    Zanon, Julian
    Faria Junior, Paulo E.
    Candido, Denis R.
    Egues, J. Carlos
    [J]. Physical Review B, 2024, 110 (19)
  • [10] Tunable chiral and helical edge state transport in a magnetic topological insulator bilayer
    Feng, Yang
    Jiang, Gaoyuan
    Wu, Weixiong
    Li, Shaorui
    He, Ke
    Ma, Xucun
    Xue, Qi-Kun
    Wang, Yayu
    [J]. PHYSICAL REVIEW B, 2019, 100 (16)