Localization of spinor fields in higher-dimensional braneworlds

被引:0
|
作者
Jun-Jie Wan
Yu-Xiao Liu
机构
[1] Lanzhou University,Institute of Theoretical Physics & Research Center of Gravitation
[2] Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province,Key Laboratory for Magnetism and Magnetic Materials of the MOE
[3] Lanzhou University,undefined
关键词
Extra Dimensions; Large Extra Dimensions; Classical Theories of Gravity; Field Theories in Higher Dimensions;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we investigate the localization of spinor fields in braneworld models by reducing a Dirac spinor in 2n + 2-dimensional spacetime to spinors in 2n dimensions. The high-dimensional Dirac can be reduced to low-dimensional spinors including Weyl or Dirac. In conformally flat extra-dimensional spacetime, fermions cannot be localized through minimal coupling with gravity. To achieve the localization of spinor fields, we introduce a tensor coupling term given by Ψ¯ΓMΓNΓP⋯TMNP⋯Ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{\Psi}{\Gamma}^M{\Gamma}^N{\Gamma}^P\cdots {T}_{MNP\cdots}\Psi $$\end{document}, which ensures SO(n, 1) symmetry. For a tensor TMNP⋯ of odd order, the left and right chiralities of high-dimensional spinors are decoupled. We find that a special form of tensor coupling Ψ¯ΓM∂MFϕRRμνRμν⋯Ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{\Psi}{\Gamma}^M{\partial}_MF\left(\phi, R,{R}^{\mu \nu}{R}_{\mu \nu},\cdots \right)\Psi $$\end{document} may facilitate the localization of the spinor field when F(ϕ) = ϕn.
引用
收藏
相关论文
共 50 条
  • [1] Localization of spinor fields in higher-dimensional braneworlds
    Wan, Jun-Jie
    Liu, Yu-Xiao
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (12)
  • [2] Geodesics, the equivalence principle and singularities in higher-dimensional general relativity and braneworlds
    Anderson, E
    Tavakol, R
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2005, (10):
  • [3] RECONSTRUCTION OF HIGHER-DIMENSIONAL FUNCTION FIELDS
    Bogomolov, Fedor
    Tschinkel, Yuri
    [J]. MOSCOW MATHEMATICAL JOURNAL, 2011, 11 (02) : 185 - 204
  • [4] The Shafarevich Basis in Higher-Dimensional Local Fields
    Ikonnikova E.V.
    Shaverdova E.V.
    [J]. Journal of Mathematical Sciences, 2014, 202 (3) : 410 - 421
  • [5] ON ROTATED VECTOR FIELDS IN HIGHER-DIMENSIONAL SPACES
    陈一元
    [J]. Chinese Annals of Mathematics, 1988, (01) : 112 - 117
  • [6] The ABC theorem for higher-dimensional function fields
    Hsia, LC
    Wang, JTY
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (07) : 2871 - 2887
  • [7] Consistency conditions for fields localization on braneworlds
    L. F. F. Freitas
    G. Alencar
    R. R. Landim
    [J]. The European Physical Journal C, 2020, 80
  • [8] Higher-spin fields in braneworlds
    Germani, C
    Kehagias, A
    [J]. NUCLEAR PHYSICS B, 2005, 725 (1-2) : 15 - 44
  • [9] Consistency conditions for fields localization on braneworlds
    Freitas, L. F. F.
    Alencar, G.
    Landim, R. R.
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2020, 80 (05):
  • [10] Canonical Higgs fields from higher-dimensional gravity
    Egeileh, Michel
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2007, 57 (04) : 1215 - 1237