Automatic Prosodic Break Detection and Feature Analysis

被引:0
|
作者
Chong-Jia Ni
Ai-Ying Zhang
Wen-Ju Liu
Bo Xu
机构
[1] Shandong University of Finance and Economics,School of Mathematic and Quantitative Economics
[2] Chinese Academy of Sciences,National Laboratory of Pattern Recognition, Institute of Automation
关键词
prosodic break; intonational phrase boundary; classifier combination; boosting classification and regression tree; conditional random field;
D O I
暂无
中图分类号
学科分类号
摘要
Automatic prosodic break detection and annotation are important for both speech understanding and natural speech synthesis. In this paper, we discuss automatic prosodic break detection and feature analysis. The contributions of the paper are two aspects. One is that we use classifier combination method to detect Mandarin and English prosodic break using acoustic, lexical and syntactic evidence. Our proposed method achieves better performance on both the Mandarin prosodic annotation corpus — Annotated Speech Corpus of Chinese Discourse and the English prosodic annotation corpus — Boston University Radio News Corpus when compared with the baseline system and other researches' experimental results. The other is the feature analysis for prosodic break detection. The functions of different features, such as duration, pitch, energy, and intensity, are analyzed and compared in Mandarin and English prosodic break detection. Based on the feature analysis, we also verify some linguistic conclusions.
引用
收藏
页码:1184 / 1196
页数:12
相关论文
共 50 条
  • [1] Automatic Prosodic Break Detection and Feature Analysis
    Ni, Chong-Jia
    Zhang, Ai-Ying
    Liu, Wen-Ju
    Xu, Bo
    [J]. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2012, 27 (06) : 1184 - 1196
  • [2] Automatic Prosodic Break Detection and Feature Analysis
    倪崇嘉
    张爱英
    刘文举
    徐波
    [J]. Journal of Computer Science & Technology, 2012, 27 (06) : 1184 - 1196
  • [3] Automatic feature template generation for prosodic phrasing
    Liu, Fangzhou
    Zhou, You
    [J]. Journal of Software, 2012, 7 (04) : 779 - 785
  • [4] AUTOMATIC DETECTION OF PROSODIC BOUNDARIES IN SPEECH
    CAMPBELL, N
    [J]. SPEECH COMMUNICATION, 1993, 13 (3-4) : 343 - 354
  • [5] Feature analysis for automatic detection of pathological speech
    Dibazar, AA
    Narayanan, S
    Berger, TW
    [J]. SECOND JOINT EMBS-BMES CONFERENCE 2002, VOLS 1-3, CONFERENCE PROCEEDINGS: BIOENGINEERING - INTEGRATIVE METHODOLOGIES, NEW TECHNOLOGIES, 2002, : 182 - 183
  • [6] Automatic Detection of Prosodic Focus in American English
    Cho, Sunghye
    Liberman, Mark
    Lee, Yong-cheol
    [J]. INTERSPEECH 2019, 2019, : 3470 - 3474
  • [7] Automatic detection of prosodic boundaries in spontaneous speech
    Biron, Tirza
    Baum, Daniel
    Freche, Dominik
    Matalon, Nadav
    Ehrmann, Netanel
    Weinreb, Eyal
    Biron, David
    Moses, Elisha
    [J]. PLOS ONE, 2021, 16 (05):
  • [8] PROSODIC FEATURE ANALYSIS - LEON,P
    BEAUCHEM.N
    [J]. CANADIAN JOURNAL OF LINGUISTICS-REVUE CANADIENNE DE LINGUISTIQUE, 1973, 18 (02): : 163 - 166
  • [9] Prosodic Feature Analysis for Automatic Speech Assessment and Individual Report Generation in People with Down Syndrome
    Corrales-Astorgano, Mario
    Gonzalez-Ferreras, Cesar
    Escudero-Mancebo, David
    Cardenoso-Payo, Valentin
    [J]. APPLIED SCIENCES-BASEL, 2024, 14 (01):
  • [10] Using Random Forests for Prosodic Break Prediction Based on Automatic Speech Labeling
    Khomitsevich, Olga
    Chistikov, Pavel
    Zakharov, Dmitriy
    [J]. SPEECH AND COMPUTER, 2014, 8773 : 467 - 474