Remarks on Nonlinear Neumann Problems in Periodic Domains

被引:0
|
作者
Pflüger K. [1 ]
机构
[1] Institut für Mathematik I, Freie Universität Berlin, Arnimallee 2–6, Berlin
关键词
35J20; 35J65; 49J20; concentration-compactness method; nonlinear boundary condition; periodic domain; Semilinear elliptic equation;
D O I
10.1007/BF03322170
中图分类号
学科分类号
摘要
We study a semilinear elliptic equation Au = f(x, u) with nonlinear Neumann boundary condition Bu = φ(ξ, u) in an unbounded domain Ω ⊂ ℝn, the boundary of which is defined by periodic functions. We assume that f and φ and the coefficients of the operators are asymptotically periodic in the space variables. Our main result states the existence of an asymptotically decaying, nontrivial solution of this problem with minimal energy. The proof is based on the concentration-compactness principle. © 1997, Birkh/:auser Verlag, Basel.
引用
下载
收藏
页码:365 / 373
页数:8
相关论文
共 50 条