Geometric Condition;
Moderate Growth;
Real Random Variable;
Minoration Principle;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Let Xi be a sequence of independent symmetric real random variables with logarithmically concave tails. We find a new version of Sudakov minoration principle for estimating from below \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$ E \sup_{t \in T} \sum t_{i}X_{i} $\end{document}. If we moreover assume that tails of Xi are of moderate growth this enables us to give geometric conditions on set T equivalent to boundedness of the process \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$ (\sum t_{i}X_{i})_{t \in T} $\end{document}. This generalize previous results of Talagrand [T4].