DC programming and DCA for sparse Fisher linear discriminant analysis

被引:0
|
作者
Hoai An Le Thi
Duy Nhat Phan
机构
[1] Ton Duc Thang University,Department for Management of Science and Technology Development, Faculty of Mathematics Statistics
[2] University of Lorraine,Laboratory of Theoretical and Applied Computer Science
来源
关键词
Classification; Feature selection; Fisher linear discriminant analysis; DC programming; DCA;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the supervised pattern classification in the high-dimensional setting, in which the number of features is much larger than the number of observations. We present a novel approach to the sparse Fisher linear discriminant problem using the ℓ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _0$$\end{document}-norm. The resulting optimization problem is nonconvex, discontinuous and very hard to solve. We overcome the discontinuity by using appropriate approximations to the ℓ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _0$$\end{document}-norm such that the resulting problems can be formulated as difference of convex functions (DC) programs to which DC programming and DC Algorithms (DCA) are investigated. The experimental results on both simulated and real datasets demonstrate the efficiency of the proposed algorithms compared to some state-of-the-art methods.
引用
收藏
页码:2809 / 2822
页数:13
相关论文
共 50 条
  • [1] DC programming and DCA for sparse Fisher linear discriminant analysis
    Hoai An Le Thi
    Duy Nhat Phan
    [J]. NEURAL COMPUTING & APPLICATIONS, 2017, 28 (09): : 2809 - 2822
  • [2] A DC Programming Approach for Sparse Linear Discriminant Analysis
    Phan Duy Nhat
    Manh Cuong Nguyen
    Hoai An Le Thi
    [J]. ADVANCED COMPUTATIONAL METHODS FOR KNOWLEDGE ENGINEERING, 2014, 282 : 65 - 74
  • [3] Sparse Fisher's Linear Discriminant Analysis
    Siddiqui, Hasib
    Hwang, Hau
    [J]. COMPUTATIONAL IMAGING IX, 2011, 7873
  • [4] DC programming and DCA for sparse optimal scoring problem
    Hoai An Le Thi
    Duy Nhat Phan
    [J]. NEUROCOMPUTING, 2016, 186 : 170 - 181
  • [5] Sparse Fisher's linear discriminant analysis for partially labeled data
    Lu, Qiyi
    Qiao, Xingye
    [J]. STATISTICAL ANALYSIS AND DATA MINING, 2018, 11 (01) : 17 - 31
  • [6] Sparse Kernel Fisher Discriminant Analysis
    Xing, HJ
    Yang, YJ
    Wang, Y
    Hu, BG
    [J]. ADVANCES IN NEURAL NETWORKS - ISNN 2005, PT 1, PROCEEDINGS, 2005, 3496 : 824 - 830
  • [7] Comparative Performance of Classical Fisher Linear Discriminant Analysis and Robust Fisher Linear Discriminant Analysis
    Okwonu, Friday Zinzendoff
    Othman, Abdul Rahman
    [J]. MATEMATIKA, 2013, 29 (01): : 213 - 220
  • [8] On solving Linear Complementarity Problems by DC programming and DCA
    Hoai An Le Thi
    Tao Pham Dinh
    [J]. Computational Optimization and Applications, 2011, 50 : 507 - 524
  • [9] On solving Linear Complementarity Problems by DC programming and DCA
    Hoai An Le Thi
    Tao Pham Dinh
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2011, 50 (03) : 507 - 524
  • [10] On sparse Fisher discriminant method for microarray data analysis
    Fung, Eric S.
    Ng, Michael K.
    [J]. BIOINFORMATION, 2007, 2 (05) : 230 - 234